Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1524 - 1529
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-34
THE
EFFECT OF POLYMER CONCENTRATION AND SURFACTANT TYPES ON
NANOFILTRATION-SURFACTANT MEMBRANE FOR TEXTILE WASTEWATER
(Kesan Kepekatan
Polimer dan Jenis Surfaktan pada Membran Surfaktan Penurasan-Nano untuk Air
Sisa Tekstil)
Sarah Husnaini
Zainal, Abdul Rahman Hassan*, Mohd Hafez Mohd Isa
Industrial
Membrane Technology Laboratory, Department of Industrial Chemical Technology,
Faculty
of Science and Technology,
Universiti
Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
*Corresponding author: abdrahman@usim.edu.my
Received: 24
February 2015; Accepted: 27 October 2015
Abstract
In
this study, an asymmetric nanofiltration-surfactant (NFS) membrane was prepared
via simple dry/wet phase inversion technique. A newly dope formulation
consisting of different surfactants (SDS, CTAB) and polymer concentration (17
wt% - 21 wt%) were developed. The effect of these parameters on dyes
performance in terms of dyes flux, rejection and morphological structure were
examined. Experimental data showed that, at different ranges of polymer
concentration, NFS membranes shows low permeation flux of dyes ranging from
9.256 L/m2h to 14.315 L/m2h at 4 bar operating pressure.
Significantly, the addition of SDS and CTAB surfactants were found to promote
the increasing of dyes flux and rejection up to 79.698 L/m2h and
99.5% respectively. Addition of surfactant shows the membrane surface
morphology with upper layer and support layer consists of finger-like
structure, finger-like channel, macrovoids and spongy structure.
Keywords: nanofiltration, surfactant, flux, rejection,
morphological structure
Abstrak
Dalam kajian
ini, membran surfaktan penurasan-nano telah disediakan melalui teknik fasa
berbalik kering/basah mudah. Satu formulasi baru polimer yang terdiri daripada
surfaktan yang berbeza (SDS,CTAB) dan kepekatan polimer (17 wt% - 21 wt%) telah
disediakan. Kesan parameter ini terhadap prestasi pewarna dari segi fluks
warna, penolakan dan struktur morfologi telah diperiksa. Data ujikaji
menunjukkan bahawa, pada jarak yang berbeza kepekatan polimer, keputusan fluks
membran NFS menyerap rendah pewarna antara 9.256 L/m2h kepada 14.315
L/m2h pada 4 bar tekanan operasi. Lebih penting lagi, penambahan SDS
dan CTAB sebagai surfaktan didapati menggalakkan peningkatan fluks pewarna dan
penolakan sehingga masing – masing adalah 79.698 L/m2h dan 99.5%.
Penambahan surfaktan menunjukkan morfologi permukaan membran dengan lapisan atas
dan lapisan sokongan yang terdiri daripada struktur jejari, saluran jejari,
makrovoid dan struktur lembut.
Kata kunci: penurasan-nano, surfaktan, fluks, penolakan, struktur
morfologi
References
1.
Wang,
X. L., Shang, W. J., Wang, D. X., Lu, L. and Tu, C. H. (2009). Characterization
and applications of nanofiltration membranes: State of the art, Desalination, 236: 316 – 326.
2.
Ismail,
A. F. and Hassan, A. R. (2004). The deduction of fine structural details of
asymmetric nanofiltration membranes using theoretical models. Journal of Membranes Science, 231: 25 – 36.
3.
Ismail,
A. F. and Hassan, A. R. (2006). Formation and characterization of asymmetric
nanofiltration membrane: Effect of shear rate and polymer concentration. Journal of Membrane Science, 270: 57 – 72.
4.
Kowalska,
I., Korbutowicz, M. K., Nowak, K. M. and Winnicki, T. (2004). Separation of anionic
surfactants on ultrafiltration membranes. Desalination,
162: 33 – 40.
5.
Tsai,
H.A., Li, L. D., Lee, K. R., Wang, Y. C., Li, C. L., Huang, J. and Lai, J. Y.
(2000). Effect of surfactant addition on the morphology and pervaporation
performance of asymmetric polysulfone membranes. Journal of Membrane Science, 176: 97 – 103.
6.
Amirilargani,
M., Saljoughi, E. and Mohammadi, T. (2009). Effects of Tween-80 concentration
as a surfactant additive on morphology and permeability of flat sheet
polyethersulfone (PES) membrane. Desalination,
249: 837 – 842.
7.
Rahimpour,
A., Madaeni, S. S. and Mansourpanah, Y. (2007). The effect of anionic, non-ionic
and cationic surfactants on morphology and performance of polyethersulfone
ultrafiltration membranes for milk concentration. Journal of Membrane Science, 296: 110 – 121.
8.
Akbari,
A., Remigy, J. C. and Aptel, P. (2002). Treatment of textile effluent using a
polyamide-based nanofiltration membrane.
Chemical Engineering and Processing, 41: 601 – 609.
9.
Huang,
J., Liu, L., Zeng, G., Li, X., Peng, L., Li, F., Jiang, Y., Zhao, Y. and Huang,
X. (2014). Influence of feed concentration and transmembrane pressure on
membrane fouling and effect of hydraulic on the performance of ultrafiltration.
Desalination, 335: 1 – 8.
10.
Saedi,
S., Madaeni, S. S., Shamsabadi, A. A. and Mottaghi, F. (2012). The effect of
surfactants on the structure and performance of pes membrane for separation of
carbon dioxide from methane. Separation
and Purification Technology, 99: 104 – 119.