Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1254 - 1268

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-04

 

 

 

VOLTAMMETRIC DETERMINATION OF REACTIVE BLACK 5 (RB5) IN WASTE WATER SAMPLES FROM THE BATIK INDUSTRY

 

(Penentuan Voltammetrik Bagi Reaktif Black 5 (RB5) Dalam Sampel Air Sisa Dari Industri Batik)

 

Nur Syamimi Zainudin1,2, Mohamad Hadzri Yaacob1*, Noor Zuhartini Md Muslim1

 

1School of Health Sciences, Forensic Science Programme

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Faculty of Applied Science,

Universiti Teknologi MARA Cawangan Pahang, Kampus Jengka, 26400 Bandar Jengka, Pahang, Malaysia

 

*Corresponding author: hadzri@usm.my

 

 

Received: 19 April 2016; Accepted: 30 September 2016

 

 

Abstract

A cyclic voltammetry (CV) and differential pulse cathodic stripping voltammetry (DPCSV) studies of RB5 in Britton-Robinson buffer (BRB) at a hanging mercury dropping electrode (HMDE) are described. CV was carried out by cathodic and anodic potential scan over the range of +200 mV to -800 mV with no accumulation time and three well-defined pH-dependent cathodic peaks were observed. The effects of different scan rates, pH of BRB, repetitive cycle and increasing concentrations on the peak height and peak potential of the analyte were studied. The results showed that RB5 dye was adsorbed and irreversibly reduced at the mercury electrode, mainly under diffusion controlled in the optimum pH 4.0 of BRB. By using DPCSV, pH of BRB and various instrumental parameters such as scan rate, accumulation time, accumulation potential and pulse amplitude that may affect the peak height of RB5 were investigated and optimized for RB5 determination. Under the optimized parameters, the peak height was found to be linear with RB5 concentration in the range from 2.5 x 10-7 mol L-1 to 2.0 x 10-6 mol L-1. A detection limit (3SD/m) of 1.3 x 10-8 mol L-1 was achieved. The precision of the developed method in terms of RSD was 0.55% for intra-day measurement and 0.55%, 0.24% and 0.40%, for inter-day measurements, respectively. The developed method was successfully applied in the determination of RB5 in batik wastewaters with the mean recovery of 83.97 ± 4.78% to 97.93 ± 5.45% (0.5 x 10-6 mol L-1), 95.91 ± 2.68% to 103.49 ± 1.32% (1.0 x 10-6 mol L-1) and 99.17 ± 0.75% to 105.12 ± 0.28% (2.0 x 10-6 mol L-1). The developed method is considered sensitive, precise, accurate, rugged, robust, fast and low cost for routine analysis of RB5 dye in batik wastewaters over the UV-VIS spectrometry method.

 

Keywords: Reactive Black 5, differential pulse cathodic stripping, Britton-Robinson buffer, hanging mercury dropping electrode, batik wastewater samples

 

Abstrak

Kajian voltammetri berkitar (CV) dan voltammetri perlucutan denyut kebezaan (DPCSV) terhadap pewarna RB5 dalam larutan penimbal Britton-Robinson (BRB) menggunakan elektrod jatuhan raksa tergantung (HMDE) dihuraikan. CV dijalankan dengan mengimbas potential kathodik dan anodik dari +200 mV ke -800 mV tanpa masa pengumpulan dan tiga puncak diperhatikan selepas imbasan. Kesan perbezaan kadar imbasan, pH BRB, imbasan berkitar yang berulang dan peningkatan kepekatan RB5 ke atas ketinggian dan nilai keupayaan puncak dikaji. RB5 yang dijerap dan diturunkan secara tidak berbalik pada permukaan elektrod merkuri adalah dibawah kawalan difusi pada pH BRB yang optimum iaitu 4.0. Dengan menggunakan DPCSV, pH BRB dan  parameter-parameter peralatan yang memberi kesan kepada ketinggian puncak seperti  kadar imbasan, masa pengumpulan, keupayaan pengumpulan dan amplitud denyut telah dioptimumkan untuk analisis RB5. Ketinggian puncak berkadar terus dengan kepekatan RB5 dalam julat dari 2.5 x 10-7 mol L-1 hingga 2.0 x 10-6 mol L-1. Had pengesanan adalah 1.3 x 10-8 mol L-1. Ketepatan (RSD) kaedah yang dibangunkan adalah 0.55% untuk hari yang sama, manakala 0.55%, 0.24% dan 0.40% untuk tiga hari yang berbeza. Kaedah yang dibangunkan berjaya diuji bagi penentuan RB5 dalam air sisa batik dengan purata kebolehdapatan 83.97 ± 4.78% sehingga 97.93 ± 5.45% (0.5 x 10-6  mol L-1), 95.91 ± 2.68% sehingga 103.49 ± 1.32% (1.0 x 10-6 mol L-1) dan 99.17 ± 0.75% sehingga 105.12 ± 0.28% (2.0 x 10-6 mol L-1). Kaedah yang dibangunkan adalah sensitif, tepat, lasak, teguh, cepat dan menjimatkan bagi analisis rutin kandungan RB5 dalam air sisa batik berbanding kaedah spektrofotometri UV-VIS.

 

Kata kunci: Reaktif Black 5, voltammetri perlucutan denyut kebezaan, penimbal Britton-Robinson, elektrod jatuhan raksa tergantung, sampel air sisa batik

 

References

1.       Ellouze, E., Tahri, N. and Amar, R. B. (2012). Enhancement of textile wastewater treatment process using nanofiltration. Desalination, 286: 16 – 23.

2.       Norasikin, O., Mili, N., Siti, N. Z. and Nurul, A. B. M. (2010). Extraction of remazol brilliant orange 3R from textile wastewater using tetrabutyl ammonium bromide. Jurnal Teknologi, 53: 29 – 39.

3.       Nora’aini, A. and Suhaimi, N. S. (2009). Performance evaluation of locally fabricated asymmetric nanofiltration membrance for batik industry effluent. World Applied Sciences Journal, 5: 46 – 52.

4.       Cristóvão, R. O., Tavares, A. P. M., Ferreira, L. A., Loureiro, J. M., Boaventura, R. A. R. and Macedo, E. A. (2009). Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 100: 1094 – 1099.

5.       Xu, G., O’Dea, J. J. and Osteryoung, J. G. (1995). Surface reduction study of monoazo dyes by adsorptive square wave voltammetry. Dyes and Pigments, 30: 201 – 223.

6.       Muthukumar, M., Karuppiah, M. T. and Raju, G. B. (2007). Electrochemical removal of C.I acid orange 10 from aqueous solution. Separation and Purification Technology, 55: 198 – 205.

7.       Bogdanowicz, R., Fabiańska, A., Golunski, L., Sobaszek, M., Gnyba, M., Ryl, J., Darowicki, K., Ossowski, T., Janssens, S. D., Haenen, K. and Siedlecka, E. M. (2013). Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamonds and Related Materials, 39: 82 – 88.

8.       Solís, M., Solís, A., Pérez, H. I., Manjarrez, N. and Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47: 1723 – 1748.

9.       Tunc, O., Tanacı, H. and Aksu, Z. (2009). Potential use of cotton plant wastes for the removal of remazol Black B reactive dye. Journal of Hazardous Materials, 163: 187 – 198.

10.    Yavuz, Y. and Shahbazi, R. (2012). Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Separation and Purification Technology, 85: 130 –136.

11.    Méndez-Martínez, A. J., Dávila-Jiménez, M. M., Ornelas-Dávila, O., Elizalde-González, M. P., Arroyo-Abad, U., Sires, I. and Brillas, E. (2012). Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 59: 140 – 149.

12.    Jović, M., Stanković, D., Manojlović, D., Andelković, I., Milić, A., Dojčinović, B. and Roglić, G. (2013). Study of the electrochemical oxidation of reactive textile dyes using platinum electrode. International Journal of Electrochemical Sciences, 8: 168 – 183.

13.    Bersier, P. M. and Berseir, J. (1986). Polarography and voltammetry of dyes and intermediates. Trends in Analytical Chemistry, 5(4): 97 – 102.

14.    Pinheiro, H. M., Touraud, E. and Thomas, O. (2004). Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61: 121 – 139.

15.    Fogg, A. G., Zanoni, M. V. B., Yusoff, A. R. H. M., Ahmad, R., Barek, J. and Zima, J. (1998). Polarographic and voltammetric determination of triazine-based reactive azo dyes with 4-carboxypyridyl and 1,4-diazabicyclo[2,2,2]octanyl (DABCO) leaving groups. Analytica Chimica Acta, 362: 235 – 240.

16.    Švorc, L., Sochr, J., Svĭtková, J., Riejav, M. and Bustin, D. (2013). Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochimica Acta, 87: 503 – 510.

17.    Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M. and Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry, 668: 1 – 6.

18.    Yardım, Y. and Şentürk, Z. (2013). Electrochemical evaluation and adsorptive stripping voltammetric determination of capsaicin or dihydrocapsaicin on a disposable pencil graphite electrode. Talanta, 112: 11 – 19.

19.    Jain, R. and Rather, J. A. (2011). Stripping voltammetry of tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378: 27 – 33.

20.    Gaber, A. A. A., Ahmed, S. A. and Rahim, A. M. A. (2013). Cathodic adsorptive stripping voltammetric determination of Ribovirin in pharmaceutical dosage form, urine and serum. Arabian Journal of Chemistry, Article in Press.

21.    Rather, J.A. and Wael, K. D. (2012). C60-funtionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater. Sensors and Actuators B: Chemical, 171-172: 907 – 915.

22.    Guaratini, C. C. I., Fogg, A. G. and Zanoni, M. V. B. (2001). Assesment of the application of cathodic stripping voltammetry to the analysis of diazo reactive dyes and their hydrolysis products. Dyes and Pigment, 50: 211 – 221.

23.    Menek, N. and Karaman, Y. (2006). Polarographic and voltammetric investigation of 6’-butoxy-2,6-diamino-3,3’-azodipyridine. Dyes and Pigments, 68: 101 – 108.

24.    Mo, Z., Zhang, Y. M., Zhao, F., Xiao, F., Guo, G. and Zeng, B. (2010). Sensitive voltammetric determination of Sudan I in food samples by using Gemini surfactant-ionic liquid-multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chemistry, 121: 233 – 237.

25.    Ucar, M., Polat, K., Solak, A.O., Toy, M. and Aksu, M. L. (2010). The electrochemical behavior of 2-halogenated derivatives of 4-methoxyazobenzene at a mercury electrode. Dyes and Pigments, 87: 55 –61.

26.    Wu, Y. (2010). Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron (III)-porphyrin modified glassy carbon electrodes. Food Chemistry, 121: 580 – 584.

27.    Vilaseca, C., Quintana, M.C., Vicente, J., Hernández, P. and Hernández, L. (2008). Electrochemical analysis of the alanine phenylthiohydantoin derivative by cathodic stripping voltammetry. Analytical Biochemistry, 379: 91 – 95.

28.    Bagheri, A. and Hosseini, H. (2012). Electrochemistry of raloxifane on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma. Bioelectrochemistry, 88: 164 – 170.

29.    Aşangil, D., Taşdemir, İ. H. and Kılıc, E. (2012). Adsorptive stripping voltammetric methods for determination of aripiprazole. Journal of Pharmaceutical Analysis, 2(3): 193 – 199.

30.    Ardila, J. A., Sartori, E. R., Rocha-Filho, R. and Fatibello-Filho, O. (2013). Square-wave voltammetric determination of bezafibrate in pharmaceutical formulations using a cathodically pretreated boron-doped diamond electrode. Talanta, 103: 201 – 206.

31.    Jain, R. and Vikas. (2011). Voltammetric behavior of antimalarial drug artesunate in solubilized systems. Colloids and Surfaces B: Biointerfaces, 88: 729 – 733.

32.    Malode, S. J., Shetti, N. P. and Nandibewoor, S. T. (2012). Voltammetric behavior of theophylline and its determination at multi-wall carbon nanotube paste electrode. Colloids and Surface B: Biointerfaces, 97: 1 – 6.

33.    Hadzri, M.Y. (2006). Stripping voltammetric methods for the determination of aflatoxin compounds. PhD thesis, Universiti Teknologi Malaysia.

34.    Guo, Y. J., Pan, J. H. and Jing, W. J. (2004). Determination of Orange II and the supramolecular system of Orange II with cyclodextrins by polarography. Dyes and Pigments, 63: 65 – 70.

35.    Brahman, P. K., Dar, R. A. and Pitre, K. S. (2013). Adsorptive stripping voltammetric study of Vitamin B1 at multi-walled carbon nanotube paste electrode. Arabian Journal of Chemistry, Article in Press.

36.    Gupta, V. K., Jain, R., Agarwal, S., Mishra, R. and Dwivedi, A. (2011). Electrochemical determination of antihypertensive drug irbesartan in pharmaceuticals. Analytical Biochemistry, 410: 266 – 271.

37.    Rievaj, M., Švorc, L. and Bustin, D. (2013). Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sensors and Actuators B: Chemical, 181: 294 – 300.

38.    Jain, R. and Sharma, R. (2012). Cathodic adsorptive stripping voltammetry of an anti-emetic agent Granisetron in pharmaceutical formulation and biological matrix. Journal of Pharmaceutical Analysis, 2(6): 443 – 449.

39.    Tavares., E. M., Carvalho, A. M., Gonçalves, L. M., Valente, I. M., Moreira, M. M., Guido, L. F., Rodrigues, J. A., Doneux, T. and Barros, A. A. (2013). Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and xanthohumol. Electrochimica Acta, 90: 440 – 444.

40.    Chaiyo, S., Chailapakul, O., Sakai, T., Teshima, N. and Siangproh, W. (2013). Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1,10-phenanthroline. Talanta, 108: 1 – 6.

41.    De Lima, F., Gozzi, F., Fiorucci, A. R., Cardoso, C. A. L., Arruda, G. J. and Ferreira, V. S. (2011). Determination of linuron in water and vegetable samples using stripping voltammetry with carbon paste electrode. Talanta, 83: 1763 – 1768.

42.    Geremedhin, W., Amare, M. and Admassie, S. (2013). Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochimica Acta, 87: 749 – 755.

43.    Radi, A. E., Khafagy, A., El-Shobaky, A. and El-Mezayen, H. (2013). Anodic voltammetric determination of gemifloxacin using screen printed carbon nanotube. Journal of Pharmaceutical Analysis, 3(2): 132 – 136.

44.    Sadeghi, S., Motaharian, A. and Moghaddam, A. Z. (2012). Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sensors and Actuators B: Chemical, 168: 336 – 344.

45.    Yang, G., Chen, Y., Li, L. and Yang, Y. (2011). Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode. Clinica Chimica Acta, 412: 1544 – 1549.

46.    Salles, M. O., Naozuka, J. and Bertotti, M. (2012). A forensic study: Lead determination in gunshot residues. Microchemical Journal, 101: 49 – 53.

47.    Skrzypek, S., Mirčeski, V., Ciesielski, W., Sokolowski, A. and Zakrzewski, R. (2007). Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 45: 275 – 278.

48.    Elqudaby, H. M., Mohamed, G. G., Ali, F. A. and Eid, S. M. (2011). Validated voltammetric method for the determination of some antiprotozoa drugs based on the reduction at an activated glassy carbon electrode. Arabian Journal of Chemistry, 6: 327 – 333.

49.    Mohamed, D. and Tawakkol, S. N. (2013). Fluorimetric determination of diosmin and hesperidine in combined dosage forms and in plasma through complex formation with terbium. Bulletin of Faculty of Pharmacy Cairo University, 51: 81 – 88.

50.    Baig, J. A., Kazi, T.G., Shah, A. Q., Kandhro, G. A., Afridi, H. I., Arain, M. B., Jamali, M. K. and Jalbani, N. (2010). Speciation and evaluation of Arsenic in surface water and groundwater samples: A multivariate case study. Ecotoxicology and Environmental Safety, 73: 914 – 923.

51.    Bergamini, M. F., Santos, D. P. and Zanoni, M. V. B. (2010). Determination of isoniazid in human urine using screen printed carbon electrode modified with poly-L-histidine. Bioelectrochemistry, 77: 133 – 138.

52.    Radi, A. E., Mostafa, M. R., Hegazy, T. A. and Elshafey, R. M. (2012). Electrochemical study of vinylsulphone azo dye Reactive Black 5 and its determination at a glassy carbon electrode. Journal of Analytical Chemistry, 67: 890 – 894.

53.    Rivera, M., Pazos, M. and Sanromán, M. Á. (2011). Development of an electrochemical cell for the removal of Reactive Black 5. Desalination, 274: 39 – 43.

 




Previous                    Content                    Next