Malaysian Journal of Analytical
Sciences Vol 20 No 6 (2016): 1254 - 1268
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-04
VOLTAMMETRIC
DETERMINATION OF REACTIVE BLACK 5 (RB5) IN WASTE WATER SAMPLES FROM THE BATIK
INDUSTRY
(Penentuan Voltammetrik Bagi Reaktif
Black 5 (RB5) Dalam Sampel Air Sisa Dari Industri Batik)
Nur
Syamimi Zainudin1,2, Mohamad Hadzri Yaacob1*, Noor Zuhartini
Md Muslim1
1School of Health Sciences, Forensic Science Programme
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Faculty of Applied Science,
Universiti Teknologi MARA Cawangan Pahang, Kampus Jengka, 26400 Bandar Jengka,
Pahang, Malaysia
*Corresponding author: hadzri@usm.my
Received: 19
April 2016; Accepted: 30 September 2016
Abstract
A cyclic voltammetry (CV) and differential pulse cathodic
stripping voltammetry (DPCSV) studies of RB5 in Britton-Robinson buffer (BRB) at a hanging mercury dropping
electrode (HMDE) are described. CV was carried out by cathodic and anodic
potential scan over the range of +200 mV to -800 mV with no accumulation time
and three well-defined pH-dependent cathodic peaks were observed. The effects
of different scan rates, pH of BRB, repetitive cycle and increasing
concentrations on the peak height and peak potential of the analyte were
studied. The results showed that RB5 dye was adsorbed and irreversibly reduced
at the mercury electrode, mainly under diffusion controlled in the optimum pH
4.0 of BRB. By using DPCSV, pH of BRB and various instrumental parameters such
as scan rate, accumulation time, accumulation potential and pulse amplitude
that may affect the peak height of RB5 were
investigated and optimized for RB5 determination. Under the optimized
parameters, the peak height was found to be linear with RB5 concentration in
the range from 2.5 x 10-7 mol L-1 to 2.0 x 10-6
mol L-1. A detection limit (3SD/m) of 1.3 x 10-8 mol L-1
was achieved. The precision of the developed method in terms of RSD was
0.55% for intra-day measurement and 0.55%, 0.24% and 0.40%, for inter-day
measurements, respectively. The developed method
was successfully applied in the determination of RB5 in batik wastewaters with the
mean recovery of 83.97 ± 4.78% to 97.93 ± 5.45% (0.5 x 10-6 mol L-1),
95.91 ± 2.68% to 103.49 ± 1.32% (1.0 x 10-6 mol L-1) and
99.17 ± 0.75% to 105.12 ± 0.28% (2.0 x 10-6 mol L-1). The
developed method is considered sensitive, precise, accurate, rugged, robust,
fast and low cost for routine analysis of RB5 dye in batik wastewaters over the
UV-VIS spectrometry method.
Keywords: Reactive Black 5, differential
pulse cathodic stripping, Britton-Robinson buffer, hanging mercury dropping
electrode, batik wastewater samples
Abstrak
Kajian voltammetri berkitar (CV) dan voltammetri perlucutan
denyut kebezaan (DPCSV) terhadap
pewarna RB5 dalam larutan penimbal Britton-Robinson (BRB) menggunakan elektrod
jatuhan raksa tergantung (HMDE) dihuraikan.
CV dijalankan dengan mengimbas potential kathodik dan anodik dari +200 mV ke -800 mV tanpa masa
pengumpulan dan tiga puncak diperhatikan selepas imbasan. Kesan perbezaan kadar
imbasan, pH BRB, imbasan berkitar yang berulang dan peningkatan kepekatan RB5
ke atas ketinggian dan nilai keupayaan puncak dikaji. RB5 yang dijerap dan
diturunkan secara tidak berbalik pada permukaan elektrod merkuri adalah dibawah
kawalan difusi pada pH BRB yang optimum iaitu 4.0. Dengan menggunakan DPCSV, pH
BRB dan parameter-parameter peralatan yang
memberi kesan kepada ketinggian puncak seperti kadar imbasan, masa pengumpulan, keupayaan
pengumpulan dan amplitud denyut telah dioptimumkan untuk analisis RB5. Ketinggian puncak berkadar terus dengan
kepekatan RB5 dalam julat dari 2.5 x 10-7 mol L-1 hingga
2.0 x 10-6 mol L-1. Had pengesanan adalah 1.3 x 10-8
mol L-1. Ketepatan (RSD) kaedah yang dibangunkan adalah 0.55% untuk
hari yang sama, manakala 0.55%, 0.24% dan 0.40% untuk tiga hari yang berbeza. Kaedah yang dibangunkan berjaya
diuji bagi penentuan RB5 dalam air sisa batik dengan purata kebolehdapatan 83.97
± 4.78% sehingga 97.93 ± 5.45% (0.5 x 10-6 mol L-1),
95.91 ± 2.68% sehingga 103.49 ± 1.32% (1.0 x 10-6 mol L-1) dan 99.17
± 0.75% sehingga 105.12 ± 0.28% (2.0 x 10-6
mol L-1). Kaedah yang dibangunkan adalah sensitif, tepat, lasak,
teguh, cepat dan menjimatkan bagi analisis rutin kandungan RB5 dalam air sisa
batik berbanding kaedah spektrofotometri UV-VIS.
Kata kunci: Reaktif Black 5, voltammetri
perlucutan denyut kebezaan, penimbal Britton-Robinson, elektrod jatuhan raksa
tergantung, sampel air sisa batik
References
1.
Ellouze, E., Tahri, N. and Amar, R. B. (2012). Enhancement of
textile wastewater treatment process using nanofiltration. Desalination, 286: 16 – 23.
2.
Norasikin, O., Mili, N., Siti, N. Z. and Nurul, A. B. M.
(2010). Extraction of remazol brilliant orange 3R from textile wastewater using
tetrabutyl ammonium bromide. Jurnal
Teknologi, 53: 29 – 39.
3.
Nora’aini, A. and Suhaimi, N. S. (2009). Performance
evaluation of locally fabricated asymmetric nanofiltration membrance for batik
industry effluent. World Applied Sciences
Journal, 5: 46 – 52.
4.
Cristóvão, R. O., Tavares, A. P. M., Ferreira, L. A.,
Loureiro, J. M., Boaventura, R. A. R. and Macedo, E. A. (2009). Modeling the
discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 100: 1094 – 1099.
5.
Xu, G., O’Dea, J. J. and Osteryoung, J. G. (1995). Surface reduction
study of monoazo dyes by adsorptive square wave voltammetry. Dyes and Pigments, 30: 201 – 223.
6.
Muthukumar, M., Karuppiah, M. T. and Raju, G. B. (2007).
Electrochemical removal of C.I acid orange 10 from aqueous solution. Separation and Purification Technology,
55: 198 – 205.
7.
Bogdanowicz, R., Fabiańska, A., Golunski, L., Sobaszek, M.,
Gnyba, M., Ryl, J., Darowicki, K., Ossowski, T., Janssens, S. D., Haenen, K.
and Siedlecka, E. M. (2013). Influence of the boron doping level on the
electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamonds and Related Materials, 39: 82 –
88.
8.
Solís, M., Solís, A., Pérez, H. I., Manjarrez, N. and Flores,
M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47: 1723 – 1748.
9.
Tunc, O., Tanacı, H. and Aksu, Z. (2009). Potential use of
cotton plant wastes for the removal of remazol Black B reactive dye. Journal
of Hazardous Materials, 163:
187 – 198.
10.
Yavuz, Y. and Shahbazi, R. (2012). Anodic oxidation of
Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle
tower reactor. Separation and Purification
Technology, 85: 130 –136.
11.
Méndez-Martínez, A. J., Dávila-Jiménez, M. M.,
Ornelas-Dávila, O., Elizalde-González, M. P., Arroyo-Abad, U., Sires, I. and
Brillas, E. (2012). Electrochemical reduction and oxidation pathways for Reactive
Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 59: 140 – 149.
12.
Jović, M., Stanković, D., Manojlović, D., Andelković, I.,
Milić, A., Dojčinović, B. and Roglić, G. (2013). Study of the electrochemical
oxidation of reactive textile dyes using platinum electrode. International Journal of Electrochemical
Sciences, 8: 168 – 183.
13.
Bersier, P. M. and Berseir, J. (1986). Polarography and
voltammetry of dyes and intermediates. Trends
in Analytical Chemistry, 5(4): 97 – 102.
14.
Pinheiro, H. M., Touraud, E. and Thomas, O. (2004). Aromatic amines
from azo dye reduction: Status review with emphasis on direct UV
spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61: 121 – 139.
15.
Fogg, A. G., Zanoni, M. V. B., Yusoff, A. R. H. M., Ahmad,
R., Barek, J. and Zima, J. (1998). Polarographic and voltammetric determination
of triazine-based reactive azo dyes with 4-carboxypyridyl and
1,4-diazabicyclo[2,2,2]octanyl (DABCO) leaving groups. Analytica Chimica Acta, 362: 235 – 240.
16.
Švorc, L., Sochr, J., Svĭtková, J., Riejav, M. and Bustin, D.
(2013). Rapid and sensitive electrochemical determination of codeine in
pharmaceutical formulations and human urine using a boron-doped diamond film
electrode. Electrochimica Acta, 87:
503 – 510.
17.
Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M.
and Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic
acid determination in dietary supplements. Journal
of Electroanalytical Chemistry, 668: 1 – 6.
18.
Yardım, Y. and Şentürk, Z. (2013). Electrochemical evaluation
and adsorptive stripping voltammetric determination of capsaicin or
dihydrocapsaicin on a disposable pencil graphite electrode. Talanta, 112: 11 – 19.
19.
Jain, R. and Rather, J. A. (2011). Stripping voltammetry of
tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378:
27 – 33.
20.
Gaber, A. A. A., Ahmed, S. A. and Rahim, A. M. A. (2013).
Cathodic adsorptive stripping voltammetric determination of Ribovirin in pharmaceutical
dosage form, urine and serum. Arabian
Journal of Chemistry, Article in Press.
21.
Rather, J.A. and Wael, K. D. (2012). C60-funtionalized MWCNT
based sensor for sensitive detection of endocrine disruptor vinclozolin in
solubilized system and wastewater. Sensors
and Actuators B: Chemical, 171-172: 907 – 915.
22.
Guaratini, C. C. I., Fogg, A. G. and Zanoni, M. V. B. (2001).
Assesment of the application of cathodic stripping voltammetry to the analysis
of diazo reactive dyes and their hydrolysis products. Dyes and Pigment, 50: 211 – 221.
23.
Menek, N. and Karaman, Y. (2006). Polarographic and
voltammetric investigation of 6’-butoxy-2,6-diamino-3,3’-azodipyridine. Dyes and Pigments, 68: 101 – 108.
24.
Mo, Z., Zhang, Y. M., Zhao, F., Xiao, F., Guo, G. and Zeng,
B. (2010). Sensitive voltammetric determination of Sudan I in food samples by
using Gemini surfactant-ionic liquid-multiwalled carbon nanotube composite film
modified glassy carbon electrodes. Food
Chemistry, 121: 233 – 237.
25.
Ucar, M., Polat, K., Solak, A.O., Toy, M. and Aksu, M. L.
(2010). The electrochemical behavior of 2-halogenated derivatives of
4-methoxyazobenzene at a mercury electrode. Dyes
and Pigments, 87: 55 –61.
26.
Wu, Y. (2010). Electrocatalysis and sensitive determination
of Sudan I at the single-walled carbon nanotubes and iron (III)-porphyrin
modified glassy carbon electrodes. Food
Chemistry, 121: 580 – 584.
27.
Vilaseca, C., Quintana, M.C., Vicente, J., Hernández, P. and
Hernández, L. (2008). Electrochemical analysis of the alanine
phenylthiohydantoin derivative by cathodic stripping voltammetry. Analytical Biochemistry, 379: 91 – 95.
28.
Bagheri, A. and Hosseini, H. (2012). Electrochemistry of
raloxifane on glassy carbon electrode and its determination in pharmaceutical
formulations and human plasma. Bioelectrochemistry,
88: 164 – 170.
29.
Aşangil, D., Taşdemir, İ. H. and Kılıc, E. (2012). Adsorptive
stripping voltammetric methods for determination of aripiprazole. Journal of Pharmaceutical Analysis,
2(3): 193 – 199.
30.
Ardila, J. A., Sartori, E. R., Rocha-Filho, R. and
Fatibello-Filho, O. (2013). Square-wave voltammetric determination of
bezafibrate in pharmaceutical formulations using a cathodically pretreated
boron-doped diamond electrode. Talanta,
103: 201 – 206.
31.
Jain, R. and Vikas. (2011). Voltammetric behavior of antimalarial
drug artesunate in solubilized systems. Colloids
and Surfaces B: Biointerfaces, 88: 729 – 733.
32.
Malode, S. J., Shetti, N. P. and Nandibewoor, S. T. (2012).
Voltammetric behavior of theophylline and its determination at multi-wall
carbon nanotube paste electrode. Colloids
and Surface B: Biointerfaces, 97: 1 – 6.
33.
Hadzri, M.Y. (2006). Stripping voltammetric methods for the
determination of aflatoxin compounds. PhD thesis, Universiti Teknologi
Malaysia.
34.
Guo, Y. J., Pan, J. H. and Jing, W. J. (2004). Determination
of Orange II and the supramolecular system of Orange II with cyclodextrins by
polarography. Dyes and Pigments, 63:
65 – 70.
35.
Brahman, P. K., Dar, R. A. and Pitre, K. S. (2013).
Adsorptive stripping voltammetric study of Vitamin B1 at multi-walled carbon
nanotube paste electrode. Arabian Journal
of Chemistry, Article in Press.
36.
Gupta, V. K., Jain, R., Agarwal, S., Mishra, R. and Dwivedi,
A. (2011). Electrochemical determination of antihypertensive drug irbesartan in
pharmaceuticals. Analytical Biochemistry,
410: 266 – 271.
37.
Rievaj, M., Švorc, L. and Bustin, D. (2013). Green
electrochemical sensor for environmental monitoring of pesticides:
Determination of atrazine in river waters using a boron-doped diamond
electrode. Sensors and Actuators B: Chemical,
181: 294 – 300.
38.
Jain, R. and Sharma, R. (2012). Cathodic adsorptive stripping
voltammetry of an anti-emetic agent Granisetron in pharmaceutical formulation
and biological matrix. Journal of
Pharmaceutical Analysis, 2(6): 443 – 449.
39.
Tavares., E. M., Carvalho, A. M., Gonçalves, L. M., Valente,
I. M., Moreira, M. M., Guido, L. F., Rodrigues, J. A., Doneux, T. and Barros,
A. A. (2013). Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and
xanthohumol. Electrochimica Acta, 90:
440 – 444.
40.
Chaiyo, S., Chailapakul, O., Sakai, T., Teshima, N. and
Siangproh, W. (2013). Highly sensitive determination of trace copper in food by
adsorptive stripping voltammetry in the presence of 1,10-phenanthroline. Talanta, 108: 1 – 6.
41.
De Lima, F., Gozzi, F., Fiorucci, A. R., Cardoso, C. A. L.,
Arruda, G. J. and Ferreira, V. S. (2011). Determination of linuron in water and
vegetable samples using stripping voltammetry with carbon paste electrode. Talanta, 83: 1763 – 1768.
42.
Geremedhin, W., Amare, M. and Admassie, S. (2013).
Electrochemically pretreated glassy carbon electrode for electrochemical
detection of fenitrothion in tap water and human urine. Electrochimica Acta, 87: 749 – 755.
43.
Radi, A. E., Khafagy, A., El-Shobaky, A. and El-Mezayen, H.
(2013). Anodic voltammetric determination of gemifloxacin using screen printed
carbon nanotube. Journal of
Pharmaceutical Analysis, 3(2): 132 – 136.
44.
Sadeghi, S., Motaharian, A. and Moghaddam, A. Z. (2012).
Electroanalytical determination of sulfasalazine in pharmaceutical and
biological samples using molecularly imprinted polymer modified carbon paste
electrode. Sensors and Actuators B:
Chemical, 168: 336 – 344.
45.
Yang, G., Chen, Y., Li, L. and Yang, Y. (2011). Direct
electrochemical determination of morphine on a novel gold nanotube arrays
electrode. Clinica Chimica Acta, 412:
1544 – 1549.
46.
Salles, M. O., Naozuka, J. and Bertotti, M. (2012). A
forensic study: Lead determination in gunshot residues. Microchemical Journal, 101: 49 – 53.
47.
Skrzypek, S., Mirčeski, V., Ciesielski, W., Sokolowski, A.
and Zakrzewski, R. (2007). Direct determination of metformin in urine by
adsorptive catalytic square-wave voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 45: 275 – 278.
48.
Elqudaby, H. M., Mohamed, G. G., Ali, F. A. and Eid, S. M.
(2011). Validated voltammetric method for the determination of some
antiprotozoa drugs based on the reduction at an activated glassy carbon
electrode. Arabian Journal of Chemistry,
6: 327 – 333.
49.
Mohamed, D. and Tawakkol, S. N. (2013). Fluorimetric
determination of diosmin and hesperidine in combined dosage forms and in plasma
through complex formation with terbium. Bulletin
of Faculty of Pharmacy Cairo University,
51: 81 – 88.
50.
Baig, J. A., Kazi, T.G., Shah, A. Q., Kandhro, G. A., Afridi,
H. I., Arain, M. B., Jamali, M. K. and Jalbani, N. (2010). Speciation and
evaluation of Arsenic in surface water and groundwater samples: A multivariate
case study. Ecotoxicology and Environmental
Safety, 73: 914 – 923.
51.
Bergamini, M. F., Santos, D. P. and Zanoni, M. V. B. (2010).
Determination of isoniazid in human urine using screen printed carbon electrode
modified with poly-L-histidine. Bioelectrochemistry,
77: 133 – 138.
52.
Radi, A. E., Mostafa, M. R., Hegazy, T. A. and Elshafey, R. M.
(2012). Electrochemical study of vinylsulphone azo dye Reactive Black 5 and its
determination at a glassy carbon electrode. Journal
of Analytical Chemistry, 67: 890 – 894.
53.
Rivera, M., Pazos, M. and Sanromán, M. Á. (2011). Development
of an electrochemical cell for the removal of Reactive Black 5. Desalination, 274: 39 – 43.