Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1269 - 1277

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-05

 

 

 

IN-SILICO IDENTIFICATION OF POTENTIAL PROTEIN ARGININE DEIMINASE IV (PAD4) INHIBITORS

 

(Pengenalpastian In-Silico yang Berpotensi Sebagai Perencat Protein Arginin Deiminase IV (PAD4))

 

Zalikha Ibrahim1,4, Bimo Ario Tejo2, Muhammad Alif Mohammad Latif1, Roghayeh Abedi Karjiban1,

Abu Bakar Salleh3, Mohd Basyaruddin Abdul Rahman1,3*

 

1Macromolecular Simulation Laboratory, Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Faculty of Applied Science,

UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia

3Enzyme Microbial and Technology (EMTech),

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

4Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy,

International Islamic University Malaysia, Bandar Indera Mahkota Campus, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: basya@upm.edu.my

 

 

Received: 17 August 2015; Accepted: 3 July 2016

 

 

Abstract

Protein Arginine Deiminase IV (PAD4) is a promising target for treating rheumatoid arthritis. Here, an in-silico screening was performed using PAD4 crystal structure against National Cancer Institute Diversity Set III compounds. Results obtained from the docking studies showed that the compounds have high affinity towards the protein. Visual inspections of the top compounds indicated that they preferred to bind at the front door of the catalytic pocket instead of the back door. The current results from this screening could provide a basis for the development of new PAD4 inhibitors.

 

Keywords: Protein arginine deiminase IV, PAD4, virtual screening, NCI diversity set, structure-based

 

Abstrak

Protin arginina deiminase IV (PAD4) adalah sasaran yang berharapan untuk merawat artritis reumatoid. Di sini, satu saringan in-silico telah dilakukan menggunakan struktur kristal PAD4 terhadap molekul dari Set Beraneka Institut Kanser Nasional III. Keputusan dari pengdokan molekular menunjukkan molekul-molekul tersebut mempunyai daya tarikan yang tinggi terhadap protin. Pemeriksaan secara visual ke atas molekul teratas menunjukkan mereka mempunyai kecenderungan untuk terikat di pintu hadapan poket katalisis daripada di pintu belakang. Keputusan daripada pencarian ini boleh menjadi asas kepada penemuan perencat PAD4 yang baru.

 

Kata kunci: Protin arginina deiminase IV, PAD4, pencarian maya, set beraneka NCI, struktur berasas

 

References

1.       van Venrooij, W. J. and Pruijn, G. J. M. (2000). Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Research, 2: 249 – 251.

2.       Jones, J., Causey, C., Knuckley, B., Slack-Noyes, J. L. and Thompson, P. R. (2009). Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Current Opinion in Drug Discovery and Development, 12(5): 616 – 627.

3.       Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J. and Pruijn, G. J. (2003). PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays, 25(11): 1106 – 1118.

4.       van Boekel, M. A. Vossenaar, E. R., van den Hoogen, F. H. and van Venrooij, W. J. (2002). Autoantibody systems in rheumatoid arthritis: Specificity, sensitivity and diagnostic value. Arthritis Research, 4(2): 1 –7.

5.       Arita, K., Hashimoto, H., Shimizu, T., Nakashima, K., Yamada, M. and Sato, M. S. (2004). Structural basis for Ca(2+)-induced activation of human PAD4. Nature Structure Molecular Biology, 11(8): 777 – 783.

6.       Luo, Y., Knuckley, B., Lee, Y. H., Stallcup, M. R. and Thompson P. R. (2006). A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation. Journal of the American Chemical Society, 128(4): 1092 – 1093.

7.       Luo, Y., Arita, K., Bhatia, M., Knuckley, B., Lee, Y. H., Stallcup, M. R. and Thompson P. R. (2006). Inhibitors and Inactivators of Protein Arginine Deiminase 4: Functional and Structural Characterization. Biochemistry, 45(39): 11727 – 11736.

8.       Causey, C. P., Jones, J. E., Slack, J. L., Kamei, D., Jones, L. E., Subramanian, V., Knuckley, B., Ebrahimi, P., Chumanevich, A. A., Luo, Y., Hashimoto, H., Sato, M., Hofseth, L. J. and Thompson, P. R. (2011). The development of N-α-(2-carboxyl)benzoyl-N-5-(2-fluoro-1-iminoethyl)-L-ornithine amide (o-F-amidine) and N-α-(2-carboxyl)benzoyl-N-5-(2-chloro-1-iminoethyl)-L-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibit. Journal of Medicinal Chemistry, 54(19): 6919 – 6935.

9.       Lewis, H. D., Liddle, J., Coote, J. E., Atkinson, S. J., Barker, M. D., Bax, B. D., Bicker, K. L., Bingham, R. P., Campbell, M., Chen, Y. H., Chung, C. W., Craggs, P. D., Davis, R. P., Eberhard, D., Joberty, G., Lind, K. E., Locke, K., Maller, C., Martinod, K., Patten, C., Polyakova, O., Rise, C. E., Rudiger, M., Sheppard, R. J., Slade, D. J., Thomas, P., Thorpe, J., Yao, G., Drewes, G., Wagner, D. D., Thompson, P. R., Prinjha, R. K. and Wilson, D. M. (2015). Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 11(3): 189 – 191.

10.    Kalyaanamoorthy, S. and Chen, Y. P. P. (2011). Structure-based drug design to augment hit discovery. Drug Discovery Today, 16(17-18): 831 – 839.

11.    Kubinyi, H. (1998). Structure-based design of enzyme inhibitors and receptor ligands. Current Opinion. Drug Discovery and Development, 1(1): 4 – 15.

12.    Teo, C. Y., Shave, S., Chor, A. L. T., Salleh, A. B., Rahman, M. B. B. A., Walkinshaw, M. D., and Tejo, B. A. (2012). Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening. BMC bioinformatics, 13(Supplementary 17): S4.

13.    National Cancer Institute Diversity Set III (NCIDS3). Access online from https://dtp.cancer.gov

14.    Trott, O. and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455 – 461.

15.    Bozdag, M., Dreker, T., Henry, C., Tosco, P., Vallaro, M., Fruttero, R., Scozzafava, A., Carta, F. and Supuran, C. T. (2013). Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorganic and Medicinal Chemistry Letters, 23(3): 715 – 719.

16.    Irwin, J. J. and Shoichet, B. K. (2004). ZINC- a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1): 177 – 182.

17.    Sanner, M. F. (1999). Python: a programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1): 57 – 61.

18.    Gasteiger, J. and Marsili, M. (1980). Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron, 36(22): 3219 – 3228.

19.    Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16): 2785 – 2791.

20.    Ortar, G., Morera, E., De Petrocellis, L., Ligresti, A., Moriello, A.S., Morera, L., Nalli, M., Ragno, R., Pirolli, A. and Di Marzo, V. (2013). Biaryl tetrazolyl ureas as inhibitors of endocannabinoid metabolism: modulation at the N-portion and distal phenyl ring. European Journal of Medicinal Chemistry, 63: 118 –132.

21.    Lipinski, C. A., Lombardo, F., Dominy, B.W. and Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1): 3 – 26.

22.    Instant Cheminformatics Solution (2015). Access online from www.chemicalize.org (accessed on June 2015).

23.    Laskowski, R. A. and Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10): 2778 – 2786.

24.    DeLano, W. L. (2002). The PyMOL Molecular Graphics System.

25.    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14): 1639 – 1662.

26.    Arita, K., Shimizu, T., Hashimoto, H., Hidaka, Y., Yamada, M. and Sato, M. (2006). Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proceedings of the National Academy of Sciences, 103(14): 5291 – 5296.

 




Previous                    Content                    Next