Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1269 - 1277
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-05
IN-SILICO IDENTIFICATION
OF POTENTIAL PROTEIN ARGININE DEIMINASE IV (PAD4) INHIBITORS
(Pengenalpastian
In-Silico yang Berpotensi Sebagai
Perencat Protein Arginin Deiminase IV (PAD4))
Zalikha Ibrahim1,4,
Bimo Ario Tejo2, Muhammad Alif Mohammad Latif1, Roghayeh
Abedi Karjiban1,
Abu Bakar Salleh3,
Mohd Basyaruddin Abdul Rahman1,3*
1Macromolecular
Simulation Laboratory, Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
2Faculty of
Applied Science,
UCSI University, No. 1, Jalan Menara Gading, UCSI
Heights, 56000 Cheras, Kuala Lumpur, Malaysia
3Enzyme Microbial and
Technology (EMTech),
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia.
4Department of Pharmaceutical
Chemistry, Kulliyyah of Pharmacy,
International
Islamic University Malaysia, Bandar Indera Mahkota Campus, 25200 Kuantan,
Pahang, Malaysia
*Corresponding author: basya@upm.edu.my
Received: 17
August 2015; Accepted: 3 July 2016
Abstract
Protein Arginine Deiminase IV (PAD4) is
a promising target for treating rheumatoid arthritis. Here, an in-silico screening was performed using
PAD4 crystal structure against National Cancer Institute Diversity Set III
compounds. Results obtained from the docking studies showed that the compounds
have high affinity towards the protein. Visual inspections of the top compounds
indicated that they preferred to bind at the front door of the catalytic pocket
instead of the back door. The current results from this screening could provide
a basis for the development of new PAD4 inhibitors.
Keywords: Protein
arginine deiminase IV, PAD4, virtual screening, NCI diversity set,
structure-based
Abstrak
Protin arginina deiminase IV (PAD4)
adalah sasaran yang berharapan untuk merawat artritis reumatoid. Di sini, satu
saringan in-silico telah dilakukan
menggunakan struktur kristal PAD4 terhadap molekul dari Set Beraneka Institut
Kanser Nasional III. Keputusan dari pengdokan molekular menunjukkan molekul-molekul
tersebut mempunyai daya tarikan yang tinggi terhadap protin. Pemeriksaan
secara visual ke atas molekul teratas menunjukkan mereka mempunyai
kecenderungan untuk terikat di pintu hadapan poket katalisis daripada di pintu
belakang. Keputusan daripada pencarian ini boleh menjadi asas kepada penemuan
perencat PAD4 yang baru.
Kata
kunci: Protin
arginina deiminase IV, PAD4, pencarian maya, set beraneka NCI, struktur berasas
References
1. van Venrooij, W. J. and Pruijn, G. J. M. (2000).
Citrullination: a small change for a protein with great consequences for
rheumatoid arthritis. Arthritis Research, 2: 249 – 251.
2. Jones, J.,
Causey, C., Knuckley, B., Slack-Noyes, J. L. and Thompson, P. R. (2009). Protein
arginine deiminase 4 (PAD4): Current understanding and future therapeutic
potential. Current Opinion in Drug Discovery and Development, 12(5): 616
– 627.
3. Vossenaar, E. R.,
Zendman, A. J., van Venrooij, W. J. and Pruijn, G. J. (2003). PAD, a growing
family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays,
25(11): 1106 – 1118.
4. van Boekel, M. A.
Vossenaar, E. R., van den Hoogen, F. H. and van Venrooij, W. J. (2002). Autoantibody
systems in rheumatoid arthritis: Specificity, sensitivity and diagnostic value.
Arthritis Research, 4(2): 1 –7.
5. Arita, K.,
Hashimoto, H., Shimizu, T., Nakashima, K., Yamada, M. and Sato, M. S. (2004).
Structural basis for Ca(2+)-induced activation of human PAD4. Nature
Structure Molecular Biology, 11(8): 777 – 783.
6. Luo, Y., Knuckley,
B., Lee, Y. H., Stallcup, M. R. and Thompson P. R. (2006). A
fluoroacetamidine-based inactivator of protein arginine deiminase 4: design,
synthesis, and in vitro and in vivo evaluation. Journal of the American
Chemical Society, 128(4): 1092 – 1093.
7. Luo, Y., Arita, K., Bhatia, M., Knuckley, B., Lee, Y. H., Stallcup, M.
R. and Thompson P. R. (2006). Inhibitors and
Inactivators of Protein Arginine Deiminase 4: Functional and Structural
Characterization. Biochemistry, 45(39): 11727 – 11736.
8. Causey, C. P., Jones, J. E., Slack, J. L., Kamei, D.,
Jones, L. E., Subramanian, V., Knuckley, B., Ebrahimi, P., Chumanevich, A. A.,
Luo, Y., Hashimoto, H., Sato, M., Hofseth, L. J. and Thompson, P. R. (2011). The development
of N-α-(2-carboxyl)benzoyl-N-5-(2-fluoro-1-iminoethyl)-L-ornithine
amide (o-F-amidine) and N-α-(2-carboxyl)benzoyl-N-5-(2-chloro-1-iminoethyl)-L-ornithine
amide (o-Cl-amidine) as second
generation protein arginine deiminase (PAD) inhibit. Journal of Medicinal
Chemistry, 54(19): 6919 – 6935.
9. Lewis, H. D., Liddle, J., Coote, J. E., Atkinson, S.
J., Barker, M. D., Bax, B. D., Bicker, K. L., Bingham, R. P., Campbell, M.,
Chen, Y. H., Chung, C. W., Craggs, P. D., Davis, R. P., Eberhard, D., Joberty,
G., Lind, K. E., Locke, K., Maller, C., Martinod, K., Patten, C., Polyakova,
O., Rise, C. E., Rudiger, M., Sheppard, R. J., Slade, D. J., Thomas, P., Thorpe,
J., Yao, G., Drewes, G., Wagner, D. D., Thompson, P. R., Prinjha, R. K. and
Wilson, D. M. (2015). Inhibition
of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature
Chemical Biology, 11(3): 189 – 191.
10. Kalyaanamoorthy,
S. and Chen, Y. P. P. (2011). Structure-based drug design to augment hit
discovery. Drug Discovery Today, 16(17-18): 831 – 839.
11. Kubinyi, H. (1998).
Structure-based design of enzyme inhibitors and receptor ligands. Current
Opinion. Drug Discovery and Development, 1(1): 4 – 15.
12. Teo, C. Y., Shave, S., Chor, A. L. T., Salleh, A. B.,
Rahman, M. B. B. A., Walkinshaw, M. D., and Tejo, B. A. (2012). Discovery of a
new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by
structure-based virtual screening. BMC
bioinformatics, 13(Supplementary 17): S4.
13.
National
Cancer Institute Diversity Set III (NCIDS3). Access online from https://dtp.cancer.gov
14. Trott, O. and
Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal
of Computational Chemistry, 31(2): 455 – 461.
15. Bozdag, M., Dreker, T., Henry, C., Tosco, P., Vallaro,
M., Fruttero, R., Scozzafava, A., Carta, F. and Supuran, C. T. (2013). Novel
small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorganic and Medicinal Chemistry Letters,
23(3): 715 – 719.
16. Irwin, J. J. and
Shoichet, B. K. (2004). ZINC- a free database of commercially available
compounds for virtual screening. Journal of Chemical Information and
Modeling, 45(1): 177 – 182.
17. Sanner, M. F. (1999).
Python: a programming language for software integration and development. Journal
of Molecular Graphics & Modelling, 17(1): 57 – 61.
18. Gasteiger, J.
and Marsili, M. (1980). Iterative partial equalization of orbital
electronegativity - a rapid access to atomic charges. Tetrahedron,
36(22): 3219 – 3228.
19.
Morris,
G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S.,
and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational Chemistry, 30(16): 2785 – 2791.
20. Ortar,
G., Morera, E., De Petrocellis, L., Ligresti, A., Moriello, A.S., Morera, L.,
Nalli, M., Ragno, R., Pirolli, A. and Di Marzo, V. (2013). Biaryl tetrazolyl
ureas as inhibitors of endocannabinoid metabolism: modulation at the N-portion
and distal phenyl ring. European Journal of Medicinal Chemistry, 63: 118 –132.
21. Lipinski,
C. A., Lombardo, F., Dominy, B.W. and Feeney, P. J. (2001).
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Advanced Drug
Delivery Reviews, 46(1): 3 – 26.
22. Instant
Cheminformatics Solution (2015). Access online from www.chemicalize.org (accessed on June 2015).
23. Laskowski, R. A.
and Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein
interaction diagrams for drug discovery. Journal of Chemical Information and
Modeling, 51(10): 2778 – 2786.
24. DeLano, W. L. (2002).
The PyMOL Molecular Graphics System.
25. Morris, G. M.,
Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and
Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and
an empirical binding free energy function. Journal of Computational
Chemistry, 19(14): 1639 – 1662.
26. Arita, K.,
Shimizu, T., Hashimoto, H., Hidaka, Y., Yamada, M. and Sato, M. (2006).
Structural basis for histone N-terminal recognition by human peptidylarginine
deiminase 4. Proceedings of the National Academy of Sciences, 103(14): 5291 – 5296.