Malaysian Journal of Analytical Sciences Vol
21 No 1 (2017): 1 - 12
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-01
A
SCREEN-PRINTED COPPER ION SENSOR WITH PHOTOCURABLE POLY(N-BUTYL ACRYLATE) MEMBRANE
BASED ON IONOPHORE
O-XYLYLENE
BIS(N,N-DIISOBUTYLDITHIOCARBAMATE)
(Sensor Ion Kuprum Bercetak Skrin
Berasaskan Ionofor O-Xililen Bis(N,N-Diisobutil-ditiokarbamat) Dalam Membran Terawatfoto
Poli(n-butil akrilat))
Kook
Shih Ying and Lee Yook Heng*
School
of Chemical Sciences and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: leeyookheng@yahoo.co.uk
Received: 6
September 2016; Accepted: 22 November 2016
Abstract
A screen-printed copper ion sensor with
photocurable poly(n-butyl acrylate) (pBA) membrane based on ionophore
o-xylylene bis(N,N-diisobutyldithiocarbamate) (o-xc) was successfully
fabricated. Poly(2-hydroxylethyl methacrylate) (pHEMA)-modified Ag/AgCl
screen-printed electrode was used in the development of the sensor and the
sensor was characterized by potentiometric method. Optimization of pBA membrane
for the electrode was carried out by varying the compositions of sodium
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB) and o-xc to determine
the best analytical performance. The addition of NaTFPB and the increment of
its ratio relative to o-xc showed super-Nernstian, small linear range, and high
detection limit. For sensor fabricated based on o-xc without the addition of
NaTFPB, the sensor showed Nernstian response. The best optimized sensor showed
Nernstian slope with 31.29 mV/decade over a wide linear range of
1.0 × 10-2 – 1.0 × 10-6 M and low detection
limit of 1.89 × 10-7 M. The sensitivity of this sensor was also
improved over the other copper ion sensors fabricated by similar photocuring
technique. In addition, based on the separate solution method (SSM), this
sensor exhibited good selectivity towards copper ion with low logarithm
selectivity coefficient value for monovalent and divalent cations namely K+,
Na+, Ca2+, Mg2+, Ni2+ and Co2+.
Keywords: screen-printed copper ion sensor,
photocurable poly(n-butyl acrylate) membrane, ionophore o-xylylene bis(N,N-diisobutyldithiocarbamate),
potentiometry
Abstrak
Sensor
ion kuprum bercetak skrin yang berasaskan kepada ionofor o-xililen
bis(N,N-diisobutilditiokarbamat) (o-xc) dalam membran terawatfoto
poli(butil-akrilat) (pBA) telah dibangunkan. Sensor ion elektrod bercetak skrin
Ag/AgCl terubahsuai poli(2-hidroksiletil metakrilat) (pHEMA) telah digunakan
dalam pembangunan sensor dan pencirian sensor telah dijalankan melalui kaedah
potensiometri. Pengoptimunan komposisi membran sensor ion pada elektrod telah
dijalankan untuk menentukan prestasi analisis yang terbaik dengan mengubah
komposisi sodium tetrakis[3,5-bis(trifluorometil)fenil]borat (NaTFPB) dan o-xc.
Penambahan NaTFPB dan peningkatan nisbahnya terhadap o-xc dalam membran
menunjukkan super-Nernstian, julat linear yang pendek dan had pengesanan yang
tinggi. Sensor ion yang direka bentuk dengan menggunakan o-xc tanpa penambahan
NaTFPB menunjukkan rangsangan Nernstian. Sensor ion yang terbaik menunjukkan
kecerunan Nernstian iaitu 31.29mV/dekad, julat linear dari 1.0 × 10-2 –
1.0 × 10-6 M dan had pengesanan terendah 1.89 × 10-7 M.
Kepekaan sensor yang telah dibangunkan juga adalah lebih baik berbanding dengan
sensor-sensor ion kuprum lain yang telah direka bentuk melalui kaedah rawatan
foto yang sama. Nilai pekali keselektifan potensiometri ditentukan dengan
kaedah larutan berasingan (SSM). Sensor tersebut juga memberikan keselektifan
yang baik terhadap kation pengganggu dengan menunjukkan nilai pekali logaritma
keselektifan yang rendah bagi kation monovalen dan divalen seperti K+,
Na+,Ca2+, Mg2+, Ni2+ dan Co2+.
Kata kunci: sensor ion kuprum bercetak skrin, membran terawatfoto
poli(n-butil akrilat), ionofor o-xililen bis(N,N-diisobutilditiokarbamat);
potensiometri
References
1.
Kopylovich,
M. N., Mahmudov, K. T. and Pombeiro, A. J. L. (2011). Poly(vinyl) chloride
membrane copper-selective electrode based on
1-phenyl-2-(2-hydroxyphenylhydrazo) butane-1,3-dione. Journal of Harzardous Materials, 186: 1154 – 1162.
2.
Chen,
J., Li, Y. K. L, Zhong, W., Wang, H., Wu, Z., Yi, P. and Jiang, J. (2016).
Cyclam-functionalized carbon dots sensor for sensitive and selective detection
of copper (II) ion and sulfide anion in aqueous media and its imaging in live
cells. Sensors and Actuators B, 224:
298 – 306.
3.
Rajagopalan,
V., Boussaad, S. and Tao, N. J. (2003). Detection of heavy metal ions based on
quantum point contacts. Nano Letters,
3: 851 – 855.
4.
Ghaedi, M., Tashkhourian, J., Montazerozohori, M., Nejati Biyareh,
M. and Sadeghian, B. (2014). Highly selective and Sensitive determination of
copper ion based on two novel optical sensors. Arabian Journal of Chemistry: 1 – 8.
5. Tang, L., Li,
F., Liu, M. and Nandhakumar, R. (2011). Single sensor for two metal ions:
Colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+.
Spectrochimica Acta Part A, 78: 1168 –
1172.
6. Chandra, S.,
Tomar, P. K., Kumar, A., Malik, A. and Singh, A. (2013). Fabrication of
copper-selective PVC membrane electrode based on newly synthesized copper
complex of Schiff base as carrier. Journal
of Saudi Chemical Society, 1–7.
7. Georgescu, B.,
Georgescu, C., Daraban, S., Bouaru, A. and Pascalau, S. (2011). Heavy metals
acting as endocrine disrupters. Scientific
Papers: Animal Science and
Biotechnologies, 44: 89 – 93.
8.
Jasinski,
A., Guzinski, M., Lisak, G., Bobacka, J. and Bochenska, M. (2015).
Solid-contact lead(II) ion-selective electrodes for potentiometric
determination of lead(II) in presence of high concentrations of Na(I), Cu(II),
Cd(II), Zn(II), Ca(II) and Mg(II). Sensors
and Actuators B, 218: 25 – 30.
9. Singh, A. K.,
Mehtab, S and Jain, A. K. (2006). Selective electrochemical sensor for copper
(II) ion based on chelating ionophores. Analytica
Chimica Acta, 575: 25 – 31.
10. Uygun, Z. O. and
Ertugrul, U. H. D. (2014). A short footnote: Circuit design for faradaic
impedimetric sensors and biosensors. Sensors
and Actuators B, 202: 448 – 453.
11. Santini, A. O.,
Pezza, H. R. and Pezza, L. (2007). Development of a potentiometric mefenamate
ion sensor for the determination of mefenamic acid in pharmaceuticals and human
blood serum. Sensors and Actuators B,
128: 117 – 123.
12. Galovic, O.,
Samardzic, M. and Sak-bosnar, M. (2015).
A new microsensor for the determination of anionic surfactants in
commercial products. International Journal
of Electrochemical Science, 10: 5176 – 5193.
13. Jain, A. K.,
Gupta, V. K., Singh, L. P. and Raisoni, J. R. (2005). Chelating ionophore based
membrane sensors for copper (II) ions. Talanta,
66: 1355 – 1361.
14. Kamata, S.,
Murata, H., Kubo, Y. and Bhale, A. (1989). Copper (II)-selective membrane
electrodes based on o-xylylene bis(dithiocarbamates) as neutral carriers. Analyst, 114: 1029 – 1031.
15. Woznica, E.,
Mieczkowski, J. and Michalska, A. (2011). Electrochemical evidences and
consequences of significant differences in ions diffusion rate in
polyacrylate-based ion-selective membranes. Analyst,
136: 4787 – 4793.
16. Birinci, A.,
Eren, H., Coldur, F., Coskun, E. and Andac, M. (2016). Rapid determination of
trace level copper in tea infusion samples by solid contact ion selective
electrode. Journal of Food and Drug
Analysis: 1 – 8.
17. Kisiel, A.,
Woznica, E., Wojciechowski, M., Bulska, E., Maksymiuk, K. and Michalska, A.
(2015). Potentiometric layered membranes. Sensors
and Actuators B, 207: 995 – 1003.
18. Baba, I. (2006).
Sebatian ditiokarbamat: penyumbang kemajuan kimia tak organik. Universiti
Kebangsaan Malaysia, Bangi, Malaysia.
19. Layla, J. N. A.
and Maher, A. M. (2013). Synthesis and characterization of some metal (II)
complexes of dithiocarbamate. Tikrit
Journal of Pure Science, 3: 115 – 121.
20. Joanna, S. L.
and Marek, T. (1990). Flow-Injection Extraction-Spectrophotometric Copper with
Dithiocarbamates, Analytical Sciences,
6: 415 – 419.
21. Ulianas, A.,
Lee, Y. H., Ahmad, M., Lau, H., Ishak, Z. and Tan, L. L. (2014). A regenerable
screen-printed DNA biosensor based on acrylic microsphere – gold nanoparticle
composite for genetically modified soybean determination. Sensors and Actuators B, 190: 694 – 701.
22. Peper, S.,
Ceresa, A., Qin, Y. and Bakker, E. (2003). Plasticizer-free microspheres for
ionophore-based sensing and extraction based on a methyl methacrylate-decyl
methacrylate copolymer matrix. Analytical
Chimica Acta, 500: 127 – 136.
23. Aksuner, N.,
Henden, E., Yilmaz, I. and Cukurovali, A. (2012). A novel optical chemical
sensor for the determination of nickel (II) based on fluorescence quenching of
newly synthesized thiazolo-triazol derivative and application to real samples. Sensors and Actuators B, 166-167: 269 – 274.
24. Ngarisan, N. I.,
Ngah, C. W. Z., Ahmad, C. W. M. and Kuswandi, B. (2014). Optimization of
polymer inclusion membranes (PIMs) preparation for immobilization of Chrome
Azurol S for optical sensing of aluminum (III). Sensors and Actuators B, 203: 465 – 470.
25. Puig-Lleixa, C.,
Jimenez, C., Fabregas, E. and Bartroli, J. (1998). Potentiometric pH sensors
based on urethane-acrylate photocurable polymer membranes. Sensors and Actuators B, 49: 211 – 217.
26. Yew, P. L. and
Lee, Y. H. (2014). A reflectometric ion sensor for potassium based on acrylic
microspheres. Sensors and Actuators B,
191: 719 – 726.
27. Yang, X.,
Hibbert, D. B. and Alexander, P. W. (1998). Flow injection potentiometry by
poly (vinyl chloride)-membrane electrodes with substituted azacrown ionophores
for the determination of lead (II) and mercury (II) ions. Analytical Chimica Acta, 372: 387 – 398.
28. Lee, Y. H. and
Hall, E. A. H. (2001). Assessing a photocured self-plasticised acrylic membrane
recipe for Na+ and K+ ion selective electrodes. Analytical Chimica Acta, 443: 25 – 40.
29. Alva, S., Lee,
Y. H., and Ahmad, M. (2005). A new lithium ion selective sensors based on self
plasticising acrylic films and disposable screen printed electrode. Asian Conference on Sensors and the
International Conference on New Techniques in Pharmaceutical and Biomedical
Research – Proceedings: 48 – 51.
30. Ogonczyk, D.,
Tymecki, L., Wyzkiewicz, I., Koncki, R. and Glab, S. (2005). Screen-printed
disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors and Actuators B, 106: 450 – 454.
31. Renedo, O. D., Alonso-Lomillo,
M. A., and Martinez, M. J. A. (2007). Recent developments in the field of
screen-printed electrodes and their related applications. Talanta, 73: 202 – 219.
32. Miscoria, S. A.,
Jacq, C., Maeder, T. and Martin, N. R. (2014). Screen-printed electrodes for
electroanalytical sensing, of chromium VI in strong acid media. Sensors and Actuators B, 195: 294 –302.
33. Alva, S. (2008).
Pembinaan sensor ion dan biosensor potentiometri pepejal berasaskan elektrod
bercetak skrin dan filem fotopolimer metakrilik-akrilik. Thesis PhD. Universiti
Kebangsaan Malaysia. Bangi. Malaysia.
34. Jumal, J., Yamin,
B. M., Ahmad, M. and Lee, Y. H. (2012). Mercury ion-selective electrode with
self-plasticizing poly (n–buthylacrylate) membrane based on 1, 2 -bis-(n’–benzoylthioureido)
cyclohexane as ionophore. APCBEE Procedia,
3: 116 – 123.
35. Umezawa, Y.,
Bühlmann, P., Umezawa, K., Tohda, K. and Amemiya, S. (2000). Potentiometric
Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations
(Technical Report). Pure and Applied
Chemistry, 72: 1851 – 2082.
36. Lee, Y. H. and
Hall, E. A. H. (1996). Methacrylate-acrylate based polymers of low plasticiser
content for potassium ion-selctive membranes, Analytical Chimica Acta, 324: 47 – 56.
37. Rezvani, I. S. A.,
Darroudi, A., Arbab, Z. M. H., Zohuri, G. and Ashraf, N. (2013). Ion imprinted
polymer based potentiometric sensor for the trace determination of Cadmium (II)
ions. Arabian Journal of Chemistry: 1
– 6.
38. Buck, R. P. and
Lindneri, E. R. N. (1994). Recommendations for nomenclature of ion-selective
electrodes. Pure and Applied Chemistry,
66: 2527 – 2536.
39. Mittal, S. K.,
Sharma, H. K., Kumar, A. S. K. (2004). Samarium (III) selective membrane sensor
based on tin (IV) boratophosphate. Sensors,
4: 125 – 135.
40. Mi, Y., Mathison,
S., Goines, R., Logue, A. and Bakker, E. (1999). Detection limit of polymeric
membrane potentiometric ion sensors: How can we go down to trace levels? Analytical Chimica Acta, 397: 103 – 111.
41. Lee, Y. H.,
Toth, K. and Hall, E. A. H. (2004). Ion-transport and diffusion coefficients of
non-plasticized methacrylic-acrylic ion-selective membranes. Talanta, 63: 73 – 87.
42.
Ulianas,
A. (2007). Kesan perubahan komposisi membran dan elektrolit dalaman terhadap
rangsangan sensor ion kalium. Thesis Master. Universiti Kebangsaan Malaysia.
Bangi. Malaysia.
43. Gupta, K. C. and Arc, M. J. D. (2000). Performance evaluation of copper
ion selective electrode based on cyanocopolymers. Sensors & Actuators B.
Chemical, 62: 6 – 11.