Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 1 - 12

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-01

 

 

 

A SCREEN-PRINTED COPPER ION SENSOR WITH PHOTOCURABLE POLY(N-BUTYL ACRYLATE) MEMBRANE BASED ON IONOPHORE

O-XYLYLENE BIS(N,N-DIISOBUTYLDITHIOCARBAMATE)

 

(Sensor Ion Kuprum Bercetak Skrin Berasaskan Ionofor O-Xililen Bis(N,N-Diisobutil-ditiokarbamat) Dalam Membran Terawatfoto Poli(n-butil akrilat))

 

Kook Shih Ying and Lee Yook Heng*

 

School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: leeyookheng@yahoo.co.uk

 

 

Received: 6 September 2016; Accepted: 22 November 2016

 

 

Abstract

A screen-printed copper ion sensor with photocurable poly(n-butyl acrylate) (pBA) membrane based on ionophore o-xylylene bis(N,N-diisobutyldithiocarbamate) (o-xc) was successfully fabricated. Poly(2-hydroxylethyl methacrylate) (pHEMA)-modified Ag/AgCl screen-printed electrode was used in the development of the sensor and the sensor was characterized by potentiometric method. Optimization of pBA membrane for the electrode was carried out by varying the compositions of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB) and o-xc to determine the best analytical performance. The addition of NaTFPB and the increment of its ratio relative to o-xc showed super-Nernstian, small linear range, and high detection limit. For sensor fabricated based on o-xc without the addition of NaTFPB, the sensor showed Nernstian response. The best optimized sensor showed Nernstian slope with 31.29 mV/decade over a wide linear range of 1.0 × 10-2 – 1.0 × 10-6 M and low detection limit of 1.89 × 10-7 M. The sensitivity of this sensor was also improved over the other copper ion sensors fabricated by similar photocuring technique. In addition, based on the separate solution method (SSM), this sensor exhibited good selectivity towards copper ion with low logarithm selectivity coefficient value for monovalent and divalent cations namely K+, Na+, Ca2+, Mg2+, Ni2+ and Co2+.

 

Keywords:  screen-printed copper ion sensor, photocurable poly(n-butyl acrylate) membrane, ionophore o-xylylene bis(N,N-diisobutyldithiocarbamate), potentiometry

 

Abstrak

Sensor ion kuprum bercetak skrin yang berasaskan kepada ionofor o-xililen bis(N,N-diisobutilditiokarbamat) (o-xc) dalam membran terawatfoto poli(butil-akrilat) (pBA) telah dibangunkan. Sensor ion elektrod bercetak skrin Ag/AgCl terubahsuai poli(2-hidroksiletil metakrilat) (pHEMA) telah digunakan dalam pembangunan sensor dan pencirian sensor telah dijalankan melalui kaedah potensiometri. Pengoptimunan komposisi membran sensor ion pada elektrod telah dijalankan untuk menentukan prestasi analisis yang terbaik dengan mengubah komposisi sodium tetrakis[3,5-bis(trifluorometil)fenil]borat (NaTFPB) dan o-xc. Penambahan NaTFPB dan peningkatan nisbahnya terhadap o-xc dalam membran menunjukkan super-Nernstian, julat linear yang pendek dan had pengesanan yang tinggi. Sensor ion yang direka bentuk dengan menggunakan o-xc tanpa penambahan NaTFPB menunjukkan rangsangan Nernstian. Sensor ion yang terbaik menunjukkan kecerunan Nernstian iaitu 31.29mV/dekad, julat linear dari 1.0 × 10-2 – 1.0 × 10-6 M dan had pengesanan terendah 1.89 × 10-7 M. Kepekaan sensor yang telah dibangunkan juga adalah lebih baik berbanding dengan sensor-sensor ion kuprum lain yang telah direka bentuk melalui kaedah rawatan foto yang sama. Nilai pekali keselektifan potensiometri ditentukan dengan kaedah larutan berasingan (SSM). Sensor tersebut juga memberikan keselektifan yang baik terhadap kation pengganggu dengan menunjukkan nilai pekali logaritma keselektifan yang rendah bagi kation monovalen dan divalen seperti K+, Na+,Ca2+, Mg2+, Ni2+ dan Co2+.

 

Kata kunci:    sensor ion kuprum bercetak skrin, membran terawatfoto poli(n-butil akrilat), ionofor o-xililen bis(N,N-diisobutilditiokarbamat); potensiometri

 

References

1.       Kopylovich, M. N., Mahmudov, K. T. and Pombeiro, A. J. L. (2011). Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo) butane-1,3-dione. Journal of Harzardous Materials, 186: 1154 – 1162.

2.       Chen, J., Li, Y. K. L, Zhong, W., Wang, H., Wu, Z., Yi, P. and Jiang, J. (2016). Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper (II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors and Actuators B, 224: 298 – 306.

3.       Rajagopalan, V., Boussaad, S. and Tao, N. J. (2003). Detection of heavy metal ions based on quantum point contacts. Nano Letters, 3: 851 – 855.

4.       Ghaedi, M., Tashkhourian, J., Montazerozohori, M., Nejati Biyareh, M. and Sadeghian, B. (2014). Highly selective and Sensitive determination of copper ion based on two novel optical sensors. Arabian Journal of Chemistry: 1 – 8.

5.       Tang, L., Li, F., Liu, M. and Nandhakumar, R. (2011). Single sensor for two metal ions: Colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochimica Acta Part A, 78: 1168 – 1172.

6.       Chandra, S., Tomar, P. K., Kumar, A., Malik, A. and Singh, A. (2013). Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier. Journal of Saudi Chemical Society, 1–7.

7.       Georgescu, B., Georgescu, C., Daraban, S., Bouaru, A. and Pascalau, S. (2011). Heavy metals acting as endocrine disrupters. Scientific Papers: Animal Science and Biotechnologies, 44: 89 – 93.

8.       Jasinski, A., Guzinski, M., Lisak, G., Bobacka, J. and Bochenska, M. (2015). Solid-contact lead(II) ion-selective electrodes for potentiometric determination of lead(II) in presence of high concentrations of Na(I), Cu(II), Cd(II), Zn(II), Ca(II) and Mg(II). Sensors and Actuators B, 218: 25 – 30.

9.       Singh, A. K., Mehtab, S and Jain, A. K. (2006). Selective electrochemical sensor for copper (II) ion based on chelating ionophores. Analytica Chimica Acta, 575: 25 – 31.

10.    Uygun, Z. O. and Ertugrul, U. H. D. (2014). A short footnote: Circuit design for faradaic impedimetric sensors and biosensors. Sensors and Actuators B, 202: 448 – 453.

11.    Santini, A. O., Pezza, H. R. and Pezza, L. (2007). Development of a potentiometric mefenamate ion sensor for the determination of mefenamic acid in pharmaceuticals and human blood serum. Sensors and Actuators B, 128: 117 – 123.

12.    Galovic, O., Samardzic, M. and Sak-bosnar, M. (2015).  A new microsensor for the determination of anionic surfactants in commercial products. International Journal of Electrochemical Science, 10: 5176 – 5193.

13.    Jain, A. K., Gupta, V. K., Singh, L. P. and Raisoni, J. R. (2005). Chelating ionophore based membrane sensors for copper (II) ions. Talanta, 66: 1355 – 1361.

14.    Kamata, S., Murata, H., Kubo, Y. and Bhale, A. (1989). Copper (II)-selective membrane electrodes based on o-xylylene bis(dithiocarbamates) as neutral carriers. Analyst, 114: 1029 – 1031.

15.    Woznica, E., Mieczkowski, J. and Michalska, A. (2011). Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes. Analyst, 136: 4787 – 4793.

16.    Birinci, A., Eren, H., Coldur, F., Coskun, E. and Andac, M. (2016). Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode. Journal of Food and Drug Analysis: 1 – 8.

17.    Kisiel, A., Woznica, E., Wojciechowski, M., Bulska, E., Maksymiuk, K. and Michalska, A. (2015). Potentiometric layered membranes. Sensors and Actuators B, 207: 995 – 1003.

18.    Baba, I. (2006). Sebatian ditiokarbamat: penyumbang kemajuan kimia tak organik. Universiti Kebangsaan Malaysia, Bangi, Malaysia.

19.    Layla, J. N. A. and Maher, A. M. (2013). Synthesis and characterization of some metal (II) complexes of dithiocarbamate. Tikrit Journal of Pure Science, 3: 115 – 121.

20.    Joanna, S. L. and Marek, T. (1990). Flow-Injection Extraction-Spectrophotometric Copper with Dithiocarbamates, Analytical Sciences, 6: 415 – 419.

21.    Ulianas, A., Lee, Y. H., Ahmad, M., Lau, H., Ishak, Z. and Tan, L. L. (2014). A regenerable screen-printed DNA biosensor based on acrylic microsphere – gold nanoparticle composite for genetically modified soybean determination. Sensors and Actuators B, 190: 694 – 701.

22.    Peper, S., Ceresa, A., Qin, Y. and Bakker, E. (2003). Plasticizer-free microspheres for ionophore-based sensing and extraction based on a methyl methacrylate-decyl methacrylate copolymer matrix. Analytical Chimica Acta, 500: 127 – 136.

23.    Aksuner, N., Henden, E., Yilmaz, I. and Cukurovali, A. (2012). A novel optical chemical sensor for the determination of nickel (II) based on fluorescence quenching of newly synthesized thiazolo-triazol derivative and application to real samples. Sensors and Actuators B, 166-167: 269 – 274.

24.    Ngarisan, N. I., Ngah, C. W. Z., Ahmad, C. W. M. and Kuswandi, B. (2014). Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of Chrome Azurol S for optical sensing of aluminum (III). Sensors and Actuators B, 203: 465 – 470.

25.    Puig-Lleixa, C., Jimenez, C., Fabregas, E. and Bartroli, J. (1998). Potentiometric pH sensors based on urethane-acrylate photocurable polymer membranes. Sensors and Actuators B, 49: 211 – 217.

26.    Yew, P. L. and Lee, Y. H. (2014). A reflectometric ion sensor for potassium based on acrylic microspheres. Sensors and Actuators B, 191: 719 – 726.

27.    Yang, X., Hibbert, D. B. and Alexander, P. W. (1998). Flow injection potentiometry by poly (vinyl chloride)-membrane electrodes with substituted azacrown ionophores for the determination of lead (II) and mercury (II) ions. Analytical Chimica Acta, 372: 387 – 398.

28.    Lee, Y. H. and Hall, E. A. H. (2001). Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes. Analytical Chimica Acta, 443: 25 – 40.

29.    Alva, S., Lee, Y. H., and Ahmad, M. (2005). A new lithium ion selective sensors based on self plasticising acrylic films and disposable screen printed electrode. Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research – Proceedings: 48 – 51.

30.    Ogonczyk, D., Tymecki, L., Wyzkiewicz, I., Koncki, R. and Glab, S. (2005). Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors and Actuators B, 106: 450 – 454.

31.    Renedo, O. D., Alonso-Lomillo, M. A., and Martinez, M. J. A. (2007). Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 73: 202 – 219.

32.    Miscoria, S. A., Jacq, C., Maeder, T. and Martin, N. R. (2014). Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sensors and Actuators B, 195: 294 –302.

33.    Alva, S. (2008). Pembinaan sensor ion dan biosensor potentiometri pepejal berasaskan elektrod bercetak skrin dan filem fotopolimer metakrilik-akrilik. Thesis PhD. Universiti Kebangsaan Malaysia. Bangi. Malaysia.

34.    Jumal, J., Yamin, B. M., Ahmad, M. and Lee, Y. H. (2012). Mercury ion-selective electrode with self-plasticizing poly (n–buthylacrylate) membrane based on 1, 2 -bis-(n’–benzoylthioureido) cyclohexane as ionophore. APCBEE Procedia, 3: 116 – 123.

35.    Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K. and Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72: 1851 – 2082.

36.    Lee, Y. H. and Hall, E. A. H. (1996). Methacrylate-acrylate based polymers of low plasticiser content for potassium ion-selctive membranes, Analytical Chimica Acta, 324: 47 – 56.

37.    Rezvani, I. S. A., Darroudi, A., Arbab, Z. M. H., Zohuri, G. and Ashraf, N. (2013). Ion imprinted polymer based potentiometric sensor for the trace determination of Cadmium (II) ions. Arabian Journal of Chemistry: 1 – 6.

38.    Buck, R. P. and Lindneri, E. R. N. (1994). Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry, 66: 2527 – 2536.

39.    Mittal, S. K., Sharma, H. K., Kumar, A. S. K. (2004). Samarium (III) selective membrane sensor based on tin (IV) boratophosphate. Sensors, 4: 125 – 135.

40.    Mi, Y., Mathison, S., Goines, R., Logue, A. and Bakker, E. (1999). Detection limit of polymeric membrane potentiometric ion sensors: How can we go down to trace levels? Analytical Chimica Acta, 397: 103 – 111.

41.    Lee, Y. H., Toth, K. and Hall, E. A. H. (2004). Ion-transport and diffusion coefficients of non-plasticized methacrylic-acrylic ion-selective membranes. Talanta, 63: 73 – 87.

42.    Ulianas, A. (2007). Kesan perubahan komposisi membran dan elektrolit dalaman terhadap rangsangan sensor ion kalium. Thesis Master. Universiti Kebangsaan Malaysia. Bangi. Malaysia.

43.    Gupta, K. C. and Arc, M. J. D. (2000). Performance evaluation of copper ion selective electrode based on cyanocopolymers. Sensors & Actuators B. Chemical, 62: 6 – 11.

 




Previous                    Content                    Next