Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 13 - 19
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-02
MgCl2 AS EFFICIENT AND INEXPENSIVE
CATALYST FOR THE SYNTHESIS OF 1,4-DIHYDROPYRIDINE DERIVATIVES
(MgCl2 Sebagai
Pemangkin Cekap dan Murah untuk Sintesis Terbitan 1,4-Dihidropiridina)
Siti Nur Aqlili Riana Mohd Asseri1, Sian Hui Tan1, Wan Nurul Khursyiah Wan Mohamad1, Seng Chee Poh1,
Poh Wai Chia1,2*, Su-Yin Kan3,
Tse Seng Chuah4
1School of Marine Science and Environment
2Institute Marine Biotechnology
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
3Faculty of Health Sciences,
Universiti
Sultan Zainal Abidin, 21300 Kuala Terengganu, Terengganu, Malaysia
4School of Food
Science and Technology,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
*Corresponding author: pohwai@umt.edu.my
Received: 17
August 2016; Accepted: 25 October 2016
Abstract
The
synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives in the presence of
alkaline earth metal chlorides was reported. Specifically, the MgCl2
catalyzed the synthesis of 1,4-DHP derivatives in good yields, ranging from 69 –
87%. The Mg2+ serves as the Lewis acid catalyst in the formation of
1,4-DHP and the proposed mechanism of the formation of 1,4-DHP was elaborated
in this manuscript. There are many advantages employing MgCl2 as a
catalyst in this study, including inexpensive, ubiquitous availability of this
metal, simple filtration protocol, which has spark considerable interest in the
use of this catalyst in promoting organic reactions.
Keywords: alkaline earth metal, magnesium chloride;
1,4-dihydropyridine
Abstrak
Sintesis
terbitan 1,4-dihidropiridina (1,4-DHP) dalam kehadiran logam alkali bumi dibincangkan
dalam artikel ini. Secara khususnya, sintesis terbitan 1,4-DHP melalui
pemangkin MgCl2 memberi peratusan hasil yang baik, dalam lingkungan
69 –87%. Ion Mg2+ bertindak sebagai pemangkin asid Lewis dalam
pembentukan 1,4-DHP dan cadangan mekanisma terhadap pembentukan 1,4-DHP telah
dihuraikan dalam manuskrip ini. Terdapat banyak kelebihan menggunakan MgCl2
sebagai pemangkin dalam kajian ini, termasuk kos yang murah, ketersediaan logam
ini, protokol pengekstrakan yang mudah, yang mana ini telah mencetuskan minat
yang besar dalam penggunaan pemangkin ini dalam pelbagai tindak balas organik.
Kata kunci: logam alkali
bumi, magnesium klorida, 1,4-dihydropiridin
References
1.
Stone, P. H., Antman, E. M., Muller, J. E. and
Braunwald, E. (1980). Calcium channel blocking agents in the treatment of
cardiovascular disorders. Part II: Hemodynamic effects and clinical
applications. Annals of Internal Medicine,
93(6): 886 – 904.
2.
Shan, R., Velazquez, C. and Knaus, E. (2004).
Syntheses, calcium channel agonist-antagonist modulation activities, and nitric
oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)
pyridine-5-carboxylate racemates, enantiomers, and diastereomers. Journal of Medicinal Chemistry, 47(1):
254 – 261.
3.
Visentin, S., Rolando. B., Stilo. A. D., Frutterro,
R., Novara, M., Carbone, E., Roussel, C., Vanthuyne, N. and Gasco, A. (2004).
New 1,4-dihydropyridines endowed with NO-donor and calcium channel agonist
properties. Journal of Medicinal
Chemistry, 47(10): 2688 – 2693.
4.
Eharkar, P. S., Desai, B., Gaveria, H., Varu, B.,
Loriya, R., Naliapara, Y., Shah, A. and Kulkarni, V. M. (2002). Three-dimensional
quantitative structure-activity relationship of 1,4-dihydropyridines as
antitubercular agents. Journal of
Medicinal Chemistry, 45(22): 4858 – 4867.
5.
Anniyappan, M., Muralidharan, D. and Perumal, P. T. (2002).
Synthesis of Hantzsch 1,4- dihydropyridines under microwave irradiation. Synthetic Communications, 32(4): 659 – 663.
6.
Mekheimer, R. A., Hameed, A. A. and Sadek, K. U. (2008).
Solar thermochemical reactions: four-component synthesis of polyhydroquinoline
derivatives induced by solar thermal energy. Green Chemistry, 10(5): 592 – 593.
7.
Shaabani, A., Rezayan, A. H., Rahmati, A. and
Sharifi, M. (2006). Ultrasound-accelerated synthesis of 1,4- dihydropyridines
in an ionic liquid. Monatshefte fur Chemie, 137(1): 77 – 81.
8.
Legeay, J., Eyndeb, J.J.V. and Bazureau, J. P. (2005).
Ionic liquid phase technology supported the three component synthesis of
Hantzsch 1,4-dihydropyridines and Biginelli 3,4-dihydropyrimidin-2(1H)-ones
under microwave dielectric heating. Tetrahedron,
61(52): 12386 – 12397.
9.
Sharma, S. D., Hazarika, P. and Konwar, D. (2008). A
simple, green and one-pot four component synthesis of 1,4-dihydropyridines and
their aromatization. Catalysis
Communications, 9(5): 709 – 714.
10.
Maheswara, M., Siddaiah, V., Rao, Y. K., Yew-Min, T.
and Sridhar, C. (2006). A simple and efficient one-pot synthesis of
1,4-dihydropyridine using heterogenous catalyst under solvent-free conditions. Journal of Molecular Catalysis A: Chemical,
260(1): 179 – 180.
11.
Miura, K., Nakagawa, T. and Hosomi, A. (2015). Metal
chloride-promoted aldol reaction of α-dimethylsilylesters with aldehydes,
ketones, and α-enones. Synlett, 12:
1917 – 1921.
12.
Shahnaz, K., Majid, M. H., Minou, K., Farahnaz, K.
B. and Zohreh, D. (2008). A very high yielding and facile alkaline earth metals
homogeneous catalysis of Biginelli reaction: An improved protocol. Green Chemistry, 1(2): 133 – 139.
13.
Yaragorla, S., Singh, G. and Pareek, A. (2015).
Alkaline earth metal catalyzed, one-pot, multi-component approach for the
synthesis of dihydropyridine, acridine and xanthene derivatives in water. Indian Journal of Chemistry, 54: 1321 – 1326.
14.
Cotton, F. A., Wilkinson, G. and Gaus, O. L. (1995).
Basic Inorganic Chemistry. J. Wiley
& Sons. New York.
15.
Kobayashi, S. and Yamashita, Y. (2011). Alkaline
earth metal catalysts for asymmetric reactions. Accounts of Chemical Research, 44(1): 58 – 71.
16.
Alexander, J. S. and Ruhlandt-Senge, K. (2002). Not just heavy “Grignards”: Recent advances
in the organometallic chemistry of the alkaline earth metals calcium, strontium
and barium. European Journal of Inorganic Chemistry,
11: 2761 – 2774.
17.
Wang, S-X., Li, Z-L., Zhang J-C. and Li J-T. (2008).
The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation
without catalyst. Ultrasonics
Sonochemistry, 15(5): 667 – 680.
18.
Reddy, B. Palakshi., Rajesh, K. and Vijayakumar, V. (2011). Ionic Liquid [EMIM]OAc under ultrasonic
irradiation towards Synthesis of 1,4-DHP's.
Journal of the Chinese Chemical Society, 58(3): 384 – 388.
19.
Zolfigol, M. A., Salehi, P. and Safaiee, M. (2006). An efficient and eco-friendly procedure for
the synthesis of Hantzsch ethyl
1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates under mild and green
conditions. Letters in Organic Chemistry,
3(2): 153 – 156.
20.
Kuraitheerthakumaran, A., Pazhamalai, S. and
Gopalakrishnan, M. (2011). An efficient and solvent-free one-pot synthesis of
1,4-dihydropyridines under microwave irradiation. Chinese Chemical Letters, 22(10): 1199 – 1202.
21.
Yadav, D. K., Patel, R., Srivastava,V. P., Watal, G.
and Yadav, L. D. S. (2011). LiBr as an efficient catalyst for one-pot synthesis
of Hantzsch 1,4-dihydropyridines under mild conditions. Chinese Journal of Chemistry, 29(1): 118 – 122.
22.
Osnaya, R., Arroyo, G., Parada, L., Delgado, F.,
Trujillo, J., Salmón, M. and Miranda R. (2003). Biginelli vs Hantzsch esters
study under infrared radiation and solventless conditions. Arkivoc, 11: 112 – 117.
23.
Bridgwood, K. L., Veitch, G. E. and Ley, S. V. (2008).
Magnesium nitride as a convenient source of ammonia: Preparation of
dihydropyridines. Organic Letters, 10(16):
3627 – 3629.
24.
Chang, C-C., Cao, S., Kang, S., Kai, L., Tian, X.,
Pandey, P., Dunne, S. F., Luan, C-H., Surmeier, D. J. and Silverman, R. B. (2010).
Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent
L-type Ca2+ channels Ca V 1.3 and Ca V 1.2. Bioorganic & Medicinal Chemistry, 18(9): 3147 – 3158.
25.
Sabitha, G., Arundhati, K., Sudhakar, K., Sastry, B.
S. and Yadav, J. S. (2009). CeCl3·7H2O-catalyzed one-pot
synthesis of Hantzsch 1,4-dihydropyridines at room temperature. Synthetic Communications, 39(16): 2843 –
2851.