Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 105 - 112
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-12
SCREENING OF TROPICAL NATIVE AQUATIC PLANTS FOR
POLISHING PULP AND PAPER MILL FINAL EFFLUENT
(Saringan Tumbuhan Akuatik
Tropika Tempatan untuk Rawatan Penyudahan Sisa Pulpa dan Kertas)
Jamilah Ahmad1,
Siti Rozaimah Sheikh Abdullah1*, Hassimi Abu Hassan1,
Reehan Adne Abdul Rahman1,
Mushrifah Idris2
1Department of
Chemical and Process Engineering, Faculty of Engineering and Built Environment
2Tasik Chini
Research Centre, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
*Corresponding author: rozaimah@ukm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Pulp and paper mill industry is one of the biggest
water users that produce wastewater containing dye and various toxic compounds.
The study was conducted to screen for potential tropical native aquatic plants,
which can be used in phytoremediation mainly for the removal of colour and chemical
oxygen demand (COD) from pulp and paper mill effluent. Three selected tropical
native aquatic plants, Scirpus grossus,
Azola pinnata and Salvinia molesta
were planted in a greenhouse at UKM for screening test. Real final effluent
from a pulp and paper mill in Pahang was characterized and contained 181 PtCo
for colour and 72.4 mg/L COD at pH 8.1. This wastewater was exposed to weed
plant, Scirpus grossus and floating
plants, Azola pinnata and Salvinia molesta. The final effluent was
analysed after 28th day of exposure. The percentage of colour
removal for the three tropical native plants Scirpus grossus, Azola pinnata and Salvinia molesta were 50.28%, 43.09% and 49.72% respectively. While
for COD removal, all the three plants successfully removed 100% COD. From the
result, the best tropical native aquatic plant to remove colour and COD for
pulp and paper mill effluent is Scirpus
grossus.
Keywords: biological
treatment, phytoremediation, effluent, colour, chemical oxygen demand
Abstrak
Industri kilang kertas
adalah salah satu pengguna air yang terbanyak dan menghasilkan air sisa yang
mengandungi pewarna dan pelbagai sebatian toksik. Kajian ini dijalankan untuk
menyaring bagi tumbuhan tropika asli yang berpotensi untuk proses fitoremediasi
dalam penyingkiran warna dan permintaan oksigen kimia (COD) daripada sisa air
kilang pulpa dan kertas. Tiga jenis tumbuhan tropika asli telah dipilih iaitu Scirpus grossus, Azola pinnata dan Salvinia
molesta ditanam dalam
rumah tumbuhan di UKM untuk ujian saringan. Efluen sebenar dari sebuah kilang
pulpa dan kertas di Pahang telah dicirikan dan mengandungi 181 PtCo untuk warna
dan 72.4 mg/L untuk COD pada pH 8.1. Air sisa ini telah didedahkan kepada
tumbuhan rumpai iaitu Scirpus grossus
dan tumbuhan terapung Azola pinnata dan Salvinia molesta. Efluen ini dianalisis selepas diuji/didedahkan sehingga hari ke-28.
Penyingkiran warna untuk tiga tumbuhan asli yang dipilih iaitu Scirpus grossus, Azola pinnata dan Salvinia
molesta adalah masing-masing
sebanyak 50.28%, 43,09% dan 49,72%. Manakala bagi penyingkiran COD bagi Scirpus grossus, Azola pinnata dan Salvina Natans ialah 100% penyingkiran.
Daripada keputusan itu, tumbuhan tropika asli yang terbaik untuk menyingkirkan
warna dan COD dari effluen kilang pulpa dan kertas adalah Scirpus grossus.
Kata
kunci: rawatan biologi, fitoremediasi, efluen,
warna, permintaan oksigen kimia
References
1.
Roda,
J. M. and Rathi, S. (2006). Malaysia report: Feeding China’s expending demand
for wood pulp. Centre For International Forestry Research. Jakarta, Indonesia.
2.
Ali,
M. and Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill
effluent: A review. Advances in
Environment Research, 5: 175 – 196.
3.
Meagher,
R. B. and Heaton, A. C. P. (2005). Strategies for the engineered phytoremediation
of toxic element pollution: Mercury and arsenic. Journal of Industrial Microbiology and Biotechnology, 32: 502 –
513.
4.
Chaudhary
S, Rohella R, Manthan M. and Sahoo N (2002). Decolorization of craft paper mill
effluent by white rot fungi. Journal of Microbiology, 38: 221 – 224.
5.
Hossain,
M. S. K, Das, M. and Ibrahim, S. H. (2001). Aerobic studies on pollution
abatement of sulfite pulp bleaching effluent using Phanerochaete chrysosporium
(MTCC-787). Journal of Industrial Pollution Control, 17: 191 – 200.
6.
Jayaramraja,
P. R, Anthony T, Rajendran R. and Rajkumar K (2001). Decolourisation of paper
mill effluent by Aspergillus fumigatus in bioreactor. Pollution
Research, 20: 309 – 312.
7.
Pokhrel
D. and Viraraghavan T. (2004) Treatment of pulp and paper mill wastewater – A
review. Science of Total Environment, 333: 37 – 58.
8.
Barton,
D. A, Lee, J. W, Bukley, D. B. and Jett, S. W. (1996). Biotreatment of kraft mill
condensate for reuse. Proceeding Tappi Minimum Effluent Mills Symposium,
GA Atlanta, USA.
9.
Nagarathamma
R, Bajpai P, Bajpai PK (1999) studies on decolourisation, decolourisation,
degradation and detoxification of chlorinated lignin compunds in kraft
bleaching effluents by Ceriporiopsis subvermispora. Process Biochemistry,
34: 939 – 948.
10.
Purnima,
D. and Kumar, V. (2014). Biological approach for the treatment of pulp and
paper effluent in sequence batch reactor. Journal of Bioremediation &
Biodegradation, 5 (3): 1 – 10.
11.
Doty,
S. L. (2008). Enhancing phytoremediation through the use of transgenics and
endophytes. New Phytologist, 179: 318
– 333.
12.
Schnoor,
J. L, Licht, L. A, McCutcheon, S. C., Wolfe, N. L. and Carreira, L. H. (1995).
Phytoremediation of contaminated soils and sediments. Environmental Science
and Technology, 29: 318 – 323.
13.
Salt,
D.E., Smith, R. D., Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49:
643 – 668.
14.
Meagher,
R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current
Opinion in Plant Biology, 3: 153 – 162.
15.
Dietz,
A. and Schnoor, J. L. (2001). Advance in phytoremediation. Environmental Health Perspectives, 109: 163 – 168.
16.
McCutcheon,
S. C. and Schnoor, J. L. (2003). Phytoremediation:
transformation and control of contaminants. New Jersey, NJ, USA: John
Wiley & Sons, Inc.
17.
Newman,
L.A. and Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology,15: 225
– 230.
18.
Suresh,
B. and Ravishankar, G. A. (2004). Phytoremediation – A novel and promising
approach for environmental clean – up. Critical
Reviews in Biotechnology, 24: 97 – 12.
19.
Pilon-Smith,
E. A. H. and Freeman, J. L. (2006). Environmental cleanup using plants: Biotechnological
advances and ecological consideration. Frontiers in Ecology and The
Environment, 4: 203 – 210.
20.
Chappel,
J. (1998). Phytoremediation of TCE in groundwater using populus. US
Environmental Protection Agency.
21.
Stanton,
B, Eaton J, Johnson J, Rice D, Schuette B, Moser B. 2002. Hybrid popular in the
pacific Northwest. Journal of Forestry,
100: 28 – 33.
22.
Yan-de, J., Zhen-li, H. E. and Xiao-e,
Y. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal
contaminated soils. Journal of Zhejiang University Science B, 8(3):192 –
207.