Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 105 - 112

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-12

 

 

 

SCREENING OF TROPICAL NATIVE AQUATIC PLANTS FOR POLISHING PULP AND PAPER MILL FINAL EFFLUENT

 

(Saringan Tumbuhan Akuatik Tropika Tempatan untuk Rawatan Penyudahan Sisa Pulpa dan Kertas)

 

Jamilah Ahmad1, Siti Rozaimah Sheikh Abdullah1*, Hassimi Abu Hassan1, Reehan Adne Abdul Rahman1,

 Mushrifah Idris2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2Tasik Chini Research Centre, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: rozaimah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Pulp and paper mill industry is one of the biggest water users that produce wastewater containing dye and various toxic compounds. The study was conducted to screen for potential tropical native aquatic plants, which can be used in phytoremediation mainly for the removal of colour and chemical oxygen demand (COD) from pulp and paper mill effluent. Three selected tropical native aquatic plants, Scirpus grossus, Azola pinnata and Salvinia molesta were planted in a greenhouse at UKM for screening test. Real final effluent from a pulp and paper mill in Pahang was characterized and contained 181 PtCo for colour and 72.4 mg/L COD at pH 8.1. This wastewater was exposed to weed plant, Scirpus grossus and floating plants, Azola pinnata and Salvinia molesta. The final effluent was analysed after 28th day of exposure. The percentage of colour removal for the three tropical native plants Scirpus grossus, Azola pinnata and Salvinia molesta were 50.28%, 43.09% and 49.72% respectively. While for COD removal, all the three plants successfully removed 100% COD. From the result, the best tropical native aquatic plant to remove colour and COD for pulp and paper mill effluent is Scirpus grossus.

 

Keywords:  biological treatment, phytoremediation, effluent, colour, chemical oxygen demand

 

Abstrak

Industri kilang kertas adalah salah satu pengguna air yang terbanyak dan menghasilkan air sisa yang mengandungi pewarna dan pelbagai sebatian toksik. Kajian ini dijalankan untuk menyaring bagi tumbuhan tropika asli yang berpotensi untuk proses fitoremediasi dalam penyingkiran warna dan permintaan oksigen kimia (COD) daripada sisa air kilang pulpa dan kertas. Tiga jenis tumbuhan tropika asli telah dipilih iaitu Scirpus grossus, Azola pinnata dan Salvinia molesta ditanam dalam rumah tumbuhan di UKM untuk ujian saringan. Efluen sebenar dari sebuah kilang pulpa dan kertas di Pahang telah dicirikan dan mengandungi 181 PtCo untuk warna dan 72.4 mg/L untuk COD pada pH 8.1. Air sisa ini telah didedahkan kepada tumbuhan rumpai iaitu Scirpus grossus dan tumbuhan terapung Azola pinnata dan Salvinia molesta. Efluen ini dianalisis selepas diuji/didedahkan sehingga hari ke-28. Penyingkiran warna untuk tiga tumbuhan asli yang dipilih iaitu Scirpus grossus, Azola pinnata dan Salvinia molesta adalah masing-masing sebanyak 50.28%, 43,09% dan 49,72%. Manakala bagi penyingkiran COD bagi Scirpus grossus, Azola pinnata dan Salvina Natans ialah 100% penyingkiran. Daripada keputusan itu, tumbuhan tropika asli yang terbaik untuk menyingkirkan warna dan COD dari effluen kilang pulpa dan kertas adalah Scirpus grossus.

 

Kata kunci:  rawatan biologi, fitoremediasi, efluen, warna, permintaan oksigen kimia

 

References

1.       Roda, J. M. and Rathi, S. (2006). Malaysia report: Feeding China’s expending demand for wood pulp. Centre For International Forestry Research. Jakarta, Indonesia.

2.       Ali, M. and Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluent: A review. Advances in Environment Research, 5: 175 – 196.

3.       Meagher, R. B. and Heaton, A. C. P. (2005). Strategies for the engineered phytoremediation of toxic element pollution: Mercury and arsenic. Journal of Industrial Microbiology and Biotechnology, 32: 502 – 513.

4.       Chaudhary S, Rohella R, Manthan M. and Sahoo N (2002). Decolorization of craft paper mill effluent by white rot fungi. Journal of Microbiology, 38: 221 – 224.

5.       Hossain, M. S. K, Das, M. and Ibrahim, S. H. (2001). Aerobic studies on pollution abatement of sulfite pulp bleaching effluent using Phanerochaete chrysosporium (MTCC-787). Journal of Industrial Pollution Control, 17: 191 – 200.

6.       Jayaramraja, P. R, Anthony T, Rajendran R. and Rajkumar K (2001). Decolourisation of paper mill effluent by Aspergillus fumigatus in bioreactor. Pollution Research, 20: 309 – 312.

7.       Pokhrel D. and Viraraghavan T. (2004) Treatment of pulp and paper mill wastewater – A review. Science of Total Environment, 333: 37 – 58.

8.       Barton, D. A, Lee, J. W, Bukley, D. B. and Jett, S. W. (1996). Biotreatment of kraft mill condensate for reuse. Proceeding Tappi Minimum Effluent Mills Symposium, GA Atlanta, USA.

9.       Nagarathamma R, Bajpai P, Bajpai PK (1999) studies on decolourisation, decolourisation, degradation and detoxification of chlorinated lignin compunds in kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochemistry, 34: 939 – 948.

10.    Purnima, D. and Kumar, V. (2014). Biological approach for the treatment of pulp and paper effluent in sequence batch reactor. Journal of Bioremediation & Biodegradation, 5 (3): 1 – 10.

11.    Doty, S. L. (2008). Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 179: 318 – 333.

12.    Schnoor, J. L, Licht, L. A, McCutcheon, S. C., Wolfe, N. L. and Carreira, L. H. (1995). Phytoremediation of contaminated soils and sediments. Environmental Science and Technology, 29: 318 – 323.

13.    Salt, D.E., Smith, R. D., Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 643 – 668.

14.    Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3: 153 – 162.

15.    Dietz, A. and Schnoor, J. L. (2001). Advance in phytoremediation. Environmental Health Perspectives, 109: 163 – 168.

16.    McCutcheon, S. C. and Schnoor, J. L. (2003). Phytoremediation: transformation and control of contaminants. New Jersey, NJ, USA: John Wiley & Sons, Inc.

17.    Newman, L.A. and Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology,15: 225 – 230.

18.    Suresh, B. and Ravishankar, G. A. (2004). Phytoremediation – A novel and promising approach for environmental clean – up. Critical Reviews in Biotechnology, 24: 97 – 12.

19.    Pilon-Smith, E. A. H. and Freeman, J. L. (2006). Environmental cleanup using plants: Biotechnological advances and ecological consideration. Frontiers in Ecology and The Environment, 4: 203 – 210.

20.    Chappel, J. (1998). Phytoremediation of TCE in groundwater using populus. US Environmental Protection Agency.

21.    Stanton, B, Eaton J, Johnson J, Rice D, Schuette B, Moser B. 2002. Hybrid popular in the pacific Northwest. Journal of Forestry, 100: 28 – 33.

22.    Yan-de, J., Zhen-li, H. E. and Xiao-e, Y. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3):192 – 207.

 




Previous                    Content                    Next