Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 95 - 104

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-11

 

 

 

DETERMINATION OF CAFFEINE IN SURFACE WATER USING

SOLID PHASE EXTRACTION AND HIGH PERFOMANCE LIQUID CHROMATOGRAPHY

 

(Penentuan Kafien di Permukaan Air Mengunakan Pengekstrakan Fasa Pepejal dan Kromatografi Cecair Prestasi Tinggi)

 

Fouad Fadhil Al-Qaim1,2*, Siti Hasmah Jusof1, Md Pauzi Abdullah1,3, Zainab Haider Mussa1,

Nurfaizah Abu Tahrim1, Wan Mohd Afiq Wan Mohd Khalik1, Mohamed Rozali Othman1,3

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Chemistry Department, Faculty of Sciences for Women,

Babylon University, P.O. Box 4, Hilla, Iraq

3Centre for Water Research and Analysis (ALIR), Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: fouadalkaim@yahoo.com

 

 

Received: 9 April 2016; Accepted: 8 October 2016

 

 

Abstract

A new analytical method development based on solid phase extraction (SPE) combined with high performance liquid chromatography (HPLC) was carried out. The optimum working conditions were obtained based on selection of 250 mL sample loading, 0.25 µL methanol as reconstitution solvent, 100% methanol as mobile phase and 270 nm as the optimum wavelength. Good linearity was obtained in the range of 0.015 – 400 mg/L and the regression coefficient, R2, was 0.995. Limit of detection and quantification were calculated at LOD = 0.06 µg/L and LOQ = 0.2 µg/L respectively. Repeatability and robustness has showed good performance with low relative standard deviation less than 3.29% and 3.50% respectively. Time-of-flight mass spectrometry (TOF/MS) instrument was used to confirm that caffeine is definitely present in surface water with level of concentration ranged from 31.7 to 50.1 µg/L. All results were analyzed statistically using one-way ANOVA, Tukey with interval confidence 95% and P-value 0.05.

 

Keywords:  caffeine, stimulant, emerging pollutant, water quality, time of flight/mass spectrometry

 

Abstrak

Pembangunan kaedah analisis baru berasaskan pengekstrakan fasa pepejal bersama kromatografi cecair prestasi tinggi (KPCT) telah dijalankan. Kaedah optimum diperolehi berdasarkan tetapan iaitu 250 mL muatan sampel, 0.25 µL metanol sebagai pelarut, 100% methanol sebagai fasa bergerak dan 270 nm panjang gelombang yang optimum. Nilai kelinearan baik diperolehi pada julat kepekatan 0.015 – 400 mg/L dan nilai pekali regresi, R2 ialah 0.995. Had pengesanan dan kuantifikasi dihitung masing – masing pada LOD = 0.06 µg/L and LOQ = 0.2 µg/L. Kebolehulangan dan keteguhan kaedah menunjukkan prestasi baik dengan nilai sisihan piawai relatif yang rendah iaitu masing – masing kurang daripada 3.29% dan 3.50%. Spektrometri jisim masa penerbangan (TOF/MS) digunakan untuk mengesahkan kehadiran kafein di permukaan air dengan aras kepekatan antara julat 31.7 hingga 50.1 µg/L. Keputusan dianalisa mengunakan pendekatan statistik seperti ANOVA satu hala, Tukey dengan aras keyakinan 95% and nilai p 0.05.

 

Kata kunci:  kafein, perangsang, pencemar baru, kualiti air, spektrometri jisim/masa penerbangan

 

References

1.       Ferreira, A. P., de Lourdes, C. and da Cunha, N. (2005). Anthropic pollution in aquatic environment: Development of a caffeine indicator. International Journal of Environmental Health Research, 15: 303 – 311.

2.       Buerge, I. J., Poiger, T., Müller, M. D. and Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37: 691 – 700.

3.       Gardinali, P. R. and Zhao, X. (2002). Trace determination of caffeine in surface water samples by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS). Environment International, 28: 521 – 528.

4.       Barrett, M. H., Hiscock, K. M., Pedley, S., Lerner, D. N., Tellam, J. H. and French, M. J. (1999). Marker species for identifying urban groundwater recharge sources: a review and case study in Nottingham, UK. Water Research, 33: 3083 – 3097.

5.       Chen, Z., Pavelic, P., Dillon, P. and Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36: 4830 – 4838.

6.       Seiler, R. L., Zaugg, S. D., Thomas, J. M. and Howcroft, D. L. (1999). Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Groundwater, 37: 405 – 410.

7.       Lacina, P., Mravcová, L. and Vávrová, M. (2013). Application of comprehensive two-dimensional gas chromatography with mass spectrometric detection for the analysis of selected drug residues in wastewater and surface water. Journal of Environmental Sciences, 25: 204 – 212.

8.       Al-Qaim, F. F., Abdullah, M. P., Othman, M. R., Mussa, Z. H., Zakaria, Z., Latip, J. and Afiq, W. M. (2015). Investigation of the environmental transport of human pharmaceuticals to surface water: A case study of persistence of pharmaceuticals in effluent of sewage treatment plants and hospitals in Malaysia. Journal of the Brazilian Chemical Society, 26: 1124 – 1135.

9.       Mompelat, S., Le Bo, B. and Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35: 803 – 814.

10.    Gibson, A. M., Morgan, R. M., MacDonald, N. and Nikitin, A. G. (2012). Possible effects of the presence of common household chemicals in the environment: the growth of an aquatic bacterial species on high concentrations of caffeine. Journal of Biotech Research, 4: 72 – 79.

11.    Al-Qaim, F. F., Mussa, Z. H., Othman, M. R. and Abdullah, M. P. (2015). Removal of caffeine from aqueous solution by indirect electrochemical oxidation using a graphite-PVC composite electrode: A role of hypochlorite ion as an oxidising agent. Journal of Hazardous Materials, 300: 387 – 397.

12.    Al-Qaim, F. F., Abdullah, M. P. and Othman, M. R. (2012). Analysis of different therapeutic classes using liquid chromatography-mass spectrometry in the aquatic environment: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 4: 3 – 11.

13.    Mohamed, F. F., Abdullah, M. P., Othman, M. R. and Zakeria, Z. B. (2012). SPE-LC-Mass spectrometry analysis for basic pharmaceuticals with different therapeutic classes in aquatic environment. Journal of Applied Sciences Research, 8: 2124 – 2132.

14.    Moeder, M., Schrader, S., Winkler, M. and Popp, P. (2000). Solid-phase microextraction–gas chromatography–mass spectrometry of biologically active substances in water samples. Journal of Chromatography A, 873: 95 – 106.

15.    Werres, F., Stien, J., Balsaa, P., Schneider, A., Winterhalter, P. and Overath, H. (2000). Automatisierte Bestimmung polarer Arzneimittelrückstände in Wässern mittels Festphasenmikroextraktion (SPME) und Derivatisierung. Vom Wasser, 94: 135 – 147.

16.    Rasmussen, K. E. and Pedersen-Bjergaard, S. (2004). Developments in hollow fibre-based, liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 23: 1 – 10.

17.    Al-Qaim, F. F., Abdullah, M. P., Othman, M. R., Latip, J. and Zakaria, Z. (2014). Multi-residue analytical methodology-based liquid chromatography-time-of-flight-mass spectrometry for the analysis of pharmaceutical residues in surface water and effluents from sewage treatment plants and hospitals. Journal of Chromatography A, 1345: 139 – 153.

18.    Verenitch, S. S., Lowe, C. J. and Mazumder, A. (2006). Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography–ion trap tandem mass spectrometry. Journal of Chromatography A, 1116: 193 – 203.

19.    Gomes, P. C. L., Barnes, B. B., Santos-Neto, A. J., Lancas, F. M. and Snow, N. H. (2013).  Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Journal of Chromatography A, 1299: 126 – 130.

20.    Alvi, S. N., and Muhammad M. H. (2011). Validated HPLC method for determination of caffeine level in human plasma using synthetic plasma: Application to bioavailability studies. Journal of Chromatographic Science, 49: 292 – 296.

21.    Chowdhury, S. R., Maleque, M., and Shihan, M. H. (2012). Development and validation of a simple RP-HPLC method for determination of caffeine in pharmaceutical dosage forms. Asian Journal of Pharmaceutical Analysis, 2: 1 – 4.

 




Previous                    Content                    Next