Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 136 - 148
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-16
SYNTHESIS AND
CHARACTERIZATION OF HYDROXYAPATITE NANOPARTICLE
(Sintesis
dan Pencirian Nanozarah Hidrosiapatit)
Sahlil Miraz
Mohamed Rafie* and Darman Nordin
Department
of Chemical and Process Engineering,
Faculty
of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: sahlilmiraz.rafie@gmail.com
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
In this research, hydroxyapatite (HA)
nano-size powder was synthesized using wet chemical precipitation technique
under atmospheric pressure where calcium hydroxide (Ca(OH)2) and
ortho-phosphoric acid (H3PO4) were used as precursors.
Distilled water was used as a diluting media for the reaction and sodium
hydroxide (NaOH) was used to control the initial pH. The initial pH values,
reaction temperature and calcined temperature play an important role in the
morphology on HA as well as the phase formation and degree of crystallinity.
Nano HA powder has been studied at different initial pH value which is between
9.00 to 11.00, reaction temperature from 80 °C to 100 °C and calcined
temperature at 700 °C to 800 °C. The optimum initial pH value was found at pH
10.00, reaction temperature at 100 °C and calcined temperature was at 800 °C.
The crystallographic properties were evaluated by X-ray diffraction (XRD),
Fourier Transform Infrared (FTIR) and Field Emission Scanning Microscope (FESEM).
The Design Expert version 9.0.2 with statistical and graphical analysis of the
result, by using analysis of variance (ANOVA) was applied to optimize variable
in the process of synthesis of HA. Based on analysis of variance (ANOVA) that
has been perform, calcined temperature was to be influential variables on mass
of HA with value of probability less than 0.05.
Keywords: hydroxyapatite,
chemical precipitation, crystallinity, morphology, optimization
Abstrak
Dalam kajian ini, nanozarah hidroksiapatit (HA) dihasilkan
melalui kaedah pemendakan di bawah tekanan atmosfera di mana kalsium hidroksida
(Ca(OH)2)
dan asid orto fosforik (H3PO4)
merupakan larutan asas bagi penyediaan HA. Air
suling digunakan sebagai agen pelarut dalam menyediakan larutan asas bagi
proses pemendakan ini. Larutan natrium hidroksida di gunakan bagi mengawal
nilai pH. Nilai pH, suhu tindak balas dan suhu relau merupakan faktor penting
dalam pencirian dan penghabluran nanozarah HA. Nanozarah HA disediakan pada
nilai pH antara 9.00 hingga 11.00, suhu tindak balas 80 °C hingga 100 °C dan
suhu relau pada 700 °C hingga 800 °C. Pencirian nanozarah HA di uji menggunakan
X-ray Difractometer (XRD), Inframerah Transformasi Fourier (FTIR), dan
Mikroskop Pengimbas Pancaran Medan (FESEM). Perisian Design-Expert 9.0.2
digunakan untuk menganalisis data dan pengoptimuman penghasilan mendakan
HA. Berdasarkan analisis varian (ANOVA)
yang dilakukan, suhu relau merupakan pemboleh ubah yang mempengaruhi berat HA
dengan nilai kemungkinan kurang dari 0.05.
Kata kunci: hikdroksiapatit, mendakan bahan kimia, penghabluran, pencirian,
pengoptimuman
References
1.
Eshtiagh-Hosseini, H., Housaindokht, M. R. and
Chahkandi, M. (2007). Effects of parameters of sol–gel process on the phase
evolution of sol–gel-derived hydroxyapatite. Materials Chemistry and Physics,
106(2): 310 – 316.
2.
Feng, W., Mu-Sen, L., Yu-Peng, L. and Yong-Xin, Q.
(2005). A simple sol–gel technique for preparing hydroxyapatite nanopowders. Materials
Letters, 59(8): 916 – 919.
3.
Yin, G., Liu, Z., Zhan, J., Ding, F. and Yuan, N.
(2002). Impacts of the surface charge property on protein adsorption on
hydroxyapatite. Chemical Engineering Journal, 87(2): 181 – 186.
4.
Kramer, E., Podurgiel, J. and Wei, M. (2014). Control
of hydroxyapatite nanoparticle morphology using wet synthesis techniques: Reactant
addition rate effects. Materials Letters, 131: 145 – 147.
5.
Mostafa, A. A., Oudadesse, H., Mohamed, M. B., Foad,
E. S., Le Gal, Y. and Cathelineau, G. (2009). Convenient approach of
nanohydroxyapatite polymeric matrix composites. Chemical Engineering Journal,
153(1): 187 – 192.
6.
Wang, P., Li, C., Gong, H., Jiang, X., Wang, H. and Li,
K. (2010). Effects of synthesis conditions on the morphology of hydroxyapatite
nanoparticles produced by wet chemical process. Powder Technology,
203(2): 315 – 321.
7.
Wijesinghe, W. P. S. L., Mantilaka, M. M. M. G. P.
G., Premalal, E. V. A., Herath, H. M. T. U., Mahalingam, S., Edirisinghe, M.,
Rajapakse, R. P. V. J. and Rajapakse, R.
M. G. (2014). Facile synthesis of both needle-like and spherical hydroxyapatite
nanoparticles: Effect of synthetic temperature and calcination on morphology,
crystallite size and crystallinity. Materials Science and Engineering:
C, 42: 83 – 90.
8.
Abidi, S. S. A. and Murtaza, Q. (2014). Synthesis
and characterization of nano-hydroxyapatite powder using wet chemical
precipitation reaction. Journal of Materials Science & Technology,
30(4): 307 –310.
9.
Stanić, V., Dimitrijević, S., Antonović, D. G.,
Jokić, B. M., Zec, S. P., Tanasković, S. T. and Raičević, S. (2014). Synthesis
of fluorine substituted hydroxyapatite nanopowders and application of the
central composite design for determination of its antimicrobial effects. Applied
Surface Science, 290: 346 – 352.