Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 149 - 158
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-17
IRON
AND MANGANESE REMOVAL BY NANOFILTRATION AND ULTRAFILTRATION MEMBRANES:
INFLUENCE OF pH ADJUSTMENT
(Penyingkiran
Besi dan Mangan oleh Membran Penurasan-Nano dan Penurasan-Ultra: Pengaruh Pelarasan
pH)
Norherdawati Kasim 1,3*, Abdul
Wahab Mohammad 1,2, Siti Rozaimah Sheikh Abdullah1
1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment
2Research Centre for Sustainable Process Technology
(CESPRO), Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of
Chemistry, Centre for Defence Foundation Studies,
National Defence
University of Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Malaysia
*Corresponding author: herdawati@upnm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Iron and manganese present naturally in
groundwater. Both metallic ions at excessive amounts normally contribute to
rusty taste and reddish color to the water. Membrane technology may improve the
conventional groundwater treatment method which commonly requires a large area
and a lot of manpower. The present experimental work focused on membrane filtration
of iron and manganese in order to study the influence of pH adjustment to the
prepared artificial groundwater based on the permeate quality and membrane
performances. In this study, two commercially available polyamide
nanofiltration and ultrafiltration membranes (PA-NF, PA-UF) were tested to
examine their capabilities in treating groundwater for drinking water
resources. In order to achieve WHO drinking water standard, permeate quality of
the artificial groundwater is considered satisfy if concentration of iron and
manganese has reached 0.3 and 0.1 mg/L, respectively. Experimental results
showed that pH at a range of 3-11 have significantly improved membrane
performance in terms of their rejection. Rejection of iron at a feed
concentration of 100 mg/L increased as pH of the feed solution increased for
all tested membranes. However, the manganese rejection with a feed
concentration at 50 mg/L showed various pattern of performance for each
membrane. The pH of feed solution played an important role in changing the
membrane surface properties and also, the characteristic of solute. This
concludes that solute-membrane interaction mechanism has improved the
performance of the tested membranes.
Keywords: iron rejection,
manganese rejection, artificial groundwater, pH adjustment, drinking water
Abstrak
Besi dan mangan wujud semulajadi di dalam air bawah tanah. Kedua-dua ion
logam ini pada jumlah yang berlebihan menyumbang kepada rasa berkarat dan warna
yang kemerahan pada air. Kajian ini memberi tumpuan kepada penurasan logam besi
dan mangan oleh membran dengan tujuan untuk mengkaji kesan pelarasan pH
terhadap air bawah tanah buatan berdasarkan kepada kualiti telapan dan prestasi
membran. Dalam ujikaji ini, dua membran poliamida penurasan-nano dan penurasan-ultra
(PA-NF, PA-UF) yang boleh didapati secara komersial telah diuji untuk mengkaji
keupayaan dalam merawat air bawah tanah sebagai sumber air minuman. Untuk
mencapai piawaian WHO bagi air minuman, kualiti telapan air bawah tanah buatan
dianggap memuaskan jika kepekatan besi dan mangan masing-masing mencapai 0.3
dan 0.1 mg/L. Keputusan ujikaji menunjukkan bahawa pH di antara julat 3-11
dengan ketaranya telah menambahbaik prestasi membran dari segi penyingkiran.
Penyingkiran besi pada kepekatan suapan 100 mg/L telah meningkat apabila pH
suapan meningkat untuk semua membran yang diuji. Walau bagaimanapun,
penyingkaran mangan dengan kepekatan suapan pada 50 mg/L menunjukkan
kepelbagaian corak prestasi bagi setiap membran. pH larutan suapan memainkan
peranan penting dalam mengubah sifat-sifat permukaan membran dan juga sifat
bahan terlarut. Kesimpulannya, mekanisme interaksi bahan terlarut-membran telah
meningkatkan prestasi membran yang diuji.
Kata kunci: penyingkiran besi, penyingkiran mangan, air bawah tanah, pelarasan pH, air
minuman
References
1.
Filip, Z. and Demnerova, K. (2009). Survival in groundwater and FT-IR
characterization of some pathogenic and indicator bacteria. Threats to Global Water Security: 117 – 122.
2.
Stewardship, W., Series, I. (2007). Iron & manganese in
groundwater, Br. Columbia Groundwater Association.
3.
Ahmad, M. (2012). Iron and manganese removal from groundwater,
Thesis University of Oslo.
4.
Marchovecchio, R. H., Botte, J. E. and Freiji, S. E (2011). Heavy metals, major metals, trace elements, in:
Handbook Water Analysis, CRC Press.
5.
World Health Organization, WHO. (2008). Guidelines for
drinking-water quality, in: Recomendations, Volume1, 3rd edition, World Health
Organization, Geneva: pp. 390 – 399.
6.
Chaturvedi, S. and Dave, P. N. (2012). Removal of iron for
safe drinking water. Desalination,
303: 1–11.
7.
Jusoh, A., Cheng, W. H., Low, W. M., Nora’aini, A. and Megat
Mohd Noor, M. J. (2005). Study on the removal of iron and manganese in
groundwater by granular activated carbon. Desalination,
182: 347 –353.
8.
Ellis, D., Bouchard, C. and Lantagne, G. (2000) Removal of
iron and manganese from groundwater by oxidation and microfiltration. Desalination, 130: 255 – 264.
9.
Abdul Kadir, A., Othman, N. B. and Azmi, N. M (2012). Potential
of using Rosa Centifolia to remove iron and manganese in groundwater treatment. International Journal of Sustainable Construction
Engineering Technology, 3: 70 – 82.
10.
Hussin, N. H., Yusoff, I., Alias, Y., Mohamad S., Rahim, N.Y.
and Ashraf, M. A. (2013). Ionic liquid as a medium to remove iron and other
metal ions: A case study of the North Kelantan Aquifer, Malaysia. Environmental Earth Science, 71: 2105 – 2113.
11.
Choo, K.-H., Lee, H and Choi., S.-J. (2005). Iron and
manganese removal and membrane fouling during UF in conjunction with
prechlorination for drinking water treatment. Journal of Membrane Science, 267: 18 – 26.
12.
Potgieter, J. H., Mccrindle R. I., Sihlali, Z., Schwarzer R.
and Basson, N. (2005). Removal of iron and manganese from water a high organic
carbon loading part I : The effect of various coagulants. Water, Air Soil Pollution, 162: 49 – 59.
13.
Lin, J. L., Huang, C., Pan, J. R. and Wang, Y. S. (2013). Fouling
mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe
and Mn removal from groundwater. Colloids Surfaces A Physicochemical and
Engineering Aspects, 419: 87 – 93.
14.
De Munari, A. and Schäfer, A. I. (2010). Impact of speciation
on removal of manganese and organic matter by nanofiltration. Journal of Water Supply Research and Technology
Aqua, 59 : 152 – 163.
15.
Kasim, N., Mohammad, A.W. and Abdullah, S. R. S. (2015).
Characterization of hydrophilic nanofiltration and ultrafiltration membranes
for groundwater treatment as potable water resources. Desalination and Water Treatment, 57(17): 7711 – 7720.
16.
Bordoloi, S., Nath, M. and Dutta, R. K. (2013). pH-conditioning
for simultaneous removal of arsenic and iron ions from groundwater. Process Safety and Environmental Protection,
91: 405 – 414.
17.
Al-Rashdi, B. A. M., Johnson, D. J. and Hilal, N. (2013).
Removal of heavy metal ions by nanofiltration. Desalination, 315: 2 – 17.
18.
Kabsch-Korbutowicz, M. and Winnicki, T. (1996). Application
of modified polysulfone membranes to the treatment of water solutions
containing humic substances and metal ions. Desalination,
105: 41 – 49.
19.
De Munari, A., Semiao, A. J. C. and Antizar-Ladislao, B.
(2013). Retention of pesticide endosulfan by nanofiltration: Influence of
organic matter-pesticide complexation and solute-membrane interactions. Water Research, 47: 3484 – 3496.
20.
Waite, T. D. (2005). Chemical speciation effects in
nanofiltration separation, in: T.D. Schäfer, Andrea I., Fane, A.G., Waite
(Ed.), Nanofiltration-principles Application. Elsevier B.V.: pp. 148 – 168.
21.
Bordoloi, S., Nath, S. K., Gogoi, S. and Dutta, R. K. (2013).
Arsenic and iron removal from groundwater by oxidation-coagulation at optimized
pH: Laboratory and field studies. Journal
of Hazardous Materials, 260: 618 – 626.