Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 173 - 181

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-20

 

 

 

EFFECT OF CALCINATION TEMPERATURE ON ZnO/TIO2 COMPOSITE IN PHOTOCATALYTIC TREATMENT OF PHENOL UNDER VISIBLE LIGHT

 

(Kesan Pengkalsinan Suhu ke atas Komposit ZnO/TiO2 untuk Menyingkirkan Fenol Melalui Fotopemangkin di bawah Cahaya Nampak)

 

Nur Syazrin Amalina Abdullah*, Sufian So’aib, Jaganatthan Krishnan

 

Faculty of Chemical Engineering,

Universiti Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: syaz_pingu@yahoo.com

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Composite catalyst ZnO/TiO2 of molar ratio 0.75% was synthesized via sol gel method. The effect of preparation method on the crystal morphology was investigated. The catalyst particles were calcinated at 500 oC,550 oC and 600 °C for 3 hours. The XRD results revealed that calcination temperature controls the crystalline phase in terms of homogeneity and surface area of catalyst produced. The particle size was found to increase with calcination temperature suggesting the effect of different calcination temperatures on catalytic  activity  for  complete degradation of phenol. The result found that ZnO/TiO2 catalyst calcinated at 600 oC resulted in 70% phenol degradation within five hours of irradiation time under visible light. The kinetic behavior of phenol degradation was found to fit with pseudo first order Langmuir-Hinshelwood kinetic model.

 

Keywords:  sol gel, ZnO/TiO2 catalyst, photocatalytic degradation, visible light, kinetic

 

Abstrak

Pemangkin komposit ZnO/TiO2 dengan 0.75% nisbah molar telah di sintesis melalui kaedah sol gel. Kesan kaedah penyediaan pada morfologi kristal itu telah di selidiki. Zarah-zarah pemangkin telah dikalsinkan pada suhu 500 oC, 550 oC dan 600 oC selama 3 jam. Keputusan XRD menunjukkan suhu pengkalsinan mengawal fasa kristal dari segi kesamaan dan kawasan permukaan pemangkin dihasilkan. Saiz zarah didapati meningkat sejajar dengan peningkatan suhu pengkalsinan mencadangkan kesan suhu pengkalsinan yang berbeza pada aktiviti pemangkin untuk penyingkiran penuh fenol. Keputusan mendapati pemangkin ZnO/TiO2 yang dikalsinkan pada 600 oC boleh menyebabkan 70% fenol terdegradasi bagi tempoh lima jam masa penyinaran di bawah cahaya nampak. Kelakuan kinetik degradasi fenol didapati sesuai dengan pseudo peringkat pertama model kinetik Langmuir - Hinshelwood.

 

Kata kunci:  sol gel, mangkin ZnO/TiO2, degradasi fotomangkin, cahaya nampak, kinetik

 

References

1.       Pera-Titus, M., Garcıa-Molina, V., Baños, M. A., Giménez, J. and Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4): 219 – 256.

2.       Annadurai, G., Ling, L. Y. and Lee, J. (2007). Biodegradation of phenol by Pseudomonas pictorum on immobilized with chitin. African Journal of Biotechnology, 6(3): 296 – 303.

3.       Zou, X., Dong, X., Wang, L., Ma, H., Zhang, X. and Zhang, X. (2014). Preparation of Ni doped ZnO-TiO2 composites and their enhanced photocatalytic activity. International Journal of Photoenergy, 2014: 1 – 8.

4.       Dey, S. and Mukherjee, S. (2010). Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor. International Journal of Water Resources and Environmental Engineering, 3(2): 40 – 49.

5.       Busca, G., Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials, 160(2), 265 – 288.

6.       Udom, I., Myers, P. D., Ram, M. K., Hepp, A. F., Archibong, E., Stefanakos, E. K. and Goswami, D. Y. (2014). Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor. American Journal of Analytical Chemistry, 5(11): 743 – 750.

7.       Sikirman, A., Krishnan, J., Jai, J. and Faraziehan, S. (2014). Preparation, characterization and effectivity of N, Fe-TiO2 as a visible light active photocatalyst. Advanced Materials Research, 894: 245 – 249.

8.       Feng, C., Li, G., Ren, P., Wang, Y., Huang, X. and Li, D. (2014). Effect of photo-corrosion of Ag2CO3 on visible light photocatalytic activity of two kinds of Ag2CO3/TiO2 prepared from different precursors. Applied Catalysis B: Environmental, 158: 224 – 232.

9.       Wang, Z-P., Xu, J., Cai, W-M., Zhou, B-X., He, Z-G., Cai, C-G. and Hong, X-T. (2005). Visible light induced photodegradation of organic pollutants on nitrogen and fluorine co-doped TiO2 photocatalyst. Journal of Environmental Sciences, 17(1): 76 – 80.

10.    Yu, J., Yu, H., Cheng, B., Zhou, M. and Zhao, X. (2006). Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. Journal of Molecular Catalysis A: Chemical, 253(1): 112 –118.

11.    Yu, J. G., Yu, H. G., Cheng, B., Zhao, X. J., Yu, J. C.and Ho, W. K. (2003). The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. The Journal of Physical Chemistry B, 107(50): 13871 – 13879.

12.    Pei, C. C. and Leung, W. W. F. (2013). Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation. Separation and Purification Technology, 114: 108 – 116.

13.    Janitabar Darzi, S. and Movahedi, M. (2014). Visible light photodegradation of phenol using nanoscale TiO2 and ZnO impregnated with merbromin dye: A mechanistic investigation. Iranian Journal of Chemistry and Chemical Engineering, 33(2): 55 – 64.

14.    Abramović, B. F., Anderluh, V. B., Topalov, A. S. and Gaál, F. F. (2004). Kinetics of photocatalytic removal of 2-amino-5-chloropyridine from water. Acta Periodica Technologica, 35: 79 – 86.

15.    Joint Committee on Powder Diffraction Standards. Powder Diffraction File, Card No.21-1272. Swarthmore, PA.

16.    Tayade, R. J., Surolia, P. K., Kulkarni, R. G. and Jasra, R. V. (2007). Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Science and Technology of Advanced Materials, 8(6): 455 – 462.

17.    Hanaor, D. A. and Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4): 855 – 874.

18.    Amrollahi, R., Hamdy, M. S. and Mul, G. (2014). Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticles. Journal of Catalysis, 319: 194 – 199.

 




Previous                    Content                    Next