Malaysian Journal of
Analytical Sciences Vol 21 No 1 (2017): 173 - 181
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-20
EFFECT OF CALCINATION TEMPERATURE ON ZnO/TIO2 COMPOSITE IN PHOTOCATALYTIC TREATMENT OF PHENOL UNDER VISIBLE
LIGHT
(Kesan
Pengkalsinan Suhu ke atas Komposit ZnO/TiO2 untuk Menyingkirkan
Fenol Melalui Fotopemangkin di bawah Cahaya Nampak)
Nur Syazrin Amalina Abdullah*, Sufian So’aib, Jaganatthan Krishnan
Faculty
of Chemical Engineering,
Universiti
Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: syaz_pingu@yahoo.com
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Composite catalyst ZnO/TiO2 of molar ratio 0.75% was synthesized
via sol gel method. The effect of preparation
method on the crystal morphology was investigated. The catalyst particles were
calcinated at 500 oC,550 oC and 600 °C for 3 hours. The XRD results revealed that calcination
temperature controls the crystalline phase in terms of homogeneity and
surface area of catalyst produced. The particle size was found to increase with calcination
temperature suggesting the effect of different calcination temperatures on
catalytic activity for complete
degradation of phenol. The result found that ZnO/TiO2
catalyst calcinated at 600 oC resulted in 70% phenol degradation
within five hours of irradiation time under visible light. The kinetic behavior
of phenol degradation was found to fit with pseudo first order
Langmuir-Hinshelwood kinetic model.
Keywords: sol gel, ZnO/TiO2 catalyst,
photocatalytic degradation, visible light, kinetic
Abstrak
Pemangkin komposit ZnO/TiO2 dengan
0.75% nisbah molar telah di sintesis melalui kaedah sol gel. Kesan kaedah
penyediaan pada morfologi kristal itu telah di selidiki. Zarah-zarah pemangkin
telah dikalsinkan pada suhu 500 oC, 550 oC dan 600 oC
selama 3 jam. Keputusan XRD menunjukkan suhu pengkalsinan mengawal fasa kristal
dari segi kesamaan dan kawasan permukaan pemangkin dihasilkan. Saiz zarah
didapati meningkat sejajar dengan peningkatan suhu pengkalsinan mencadangkan kesan
suhu pengkalsinan yang berbeza pada aktiviti pemangkin untuk penyingkiran penuh
fenol. Keputusan mendapati pemangkin ZnO/TiO2 yang dikalsinkan pada
600 oC boleh menyebabkan 70% fenol terdegradasi bagi tempoh lima jam
masa penyinaran di bawah cahaya nampak. Kelakuan kinetik degradasi fenol
didapati sesuai dengan pseudo peringkat pertama model kinetik Langmuir -
Hinshelwood.
Kata kunci: sol gel, mangkin ZnO/TiO2,
degradasi fotomangkin, cahaya nampak, kinetik
References
1.
Pera-Titus,
M., Garcıa-Molina, V., Baños, M. A., Giménez, J. and Esplugas, S. (2004).
Degradation of chlorophenols by means of advanced oxidation processes: a
general review. Applied Catalysis B: Environmental, 47(4): 219 – 256.
2.
Annadurai,
G., Ling, L. Y. and Lee, J. (2007). Biodegradation of phenol by Pseudomonas
pictorum on immobilized with chitin. African Journal of Biotechnology,
6(3): 296 – 303.
3.
Zou,
X., Dong, X., Wang, L., Ma, H., Zhang, X. and Zhang, X. (2014). Preparation of
Ni doped ZnO-TiO2 composites and their enhanced photocatalytic
activity. International Journal of Photoenergy, 2014: 1 – 8.
4.
Dey,
S. and Mukherjee, S. (2010). Performance and kinetic evaluation of phenol
biodegradation by mixed microbial culture in a batch reactor. International
Journal of Water Resources and Environmental Engineering, 3(2): 40 – 49.
5.
Busca,
G., Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies for the
removal of phenol from fluid streams: A short review of recent developments. Journal
of Hazardous Materials, 160(2), 265 – 288.
6.
Udom,
I., Myers, P. D., Ram, M. K., Hepp, A. F., Archibong, E., Stefanakos, E. K. and
Goswami, D. Y. (2014). Optimization of photocatalytic degradation of phenol
using simple photocatalytic reactor. American Journal of Analytical
Chemistry, 5(11): 743 – 750.
7.
Sikirman,
A., Krishnan, J., Jai, J. and Faraziehan, S. (2014). Preparation,
characterization and effectivity of N, Fe-TiO2 as a visible light
active photocatalyst. Advanced Materials Research, 894: 245 – 249.
8.
Feng,
C., Li, G., Ren, P., Wang, Y., Huang, X. and Li, D. (2014). Effect of photo-corrosion
of Ag2CO3 on visible light photocatalytic activity of two
kinds of Ag2CO3/TiO2 prepared from different
precursors. Applied Catalysis B: Environmental, 158: 224 – 232.
9.
Wang,
Z-P., Xu, J., Cai, W-M., Zhou, B-X., He, Z-G., Cai, C-G. and Hong, X-T. (2005).
Visible light induced photodegradation of organic pollutants on nitrogen and
fluorine co-doped TiO2 photocatalyst. Journal of Environmental
Sciences, 17(1): 76 – 80.
10.
Yu,
J., Yu, H., Cheng, B., Zhou, M. and Zhao, X. (2006). Enhanced photocatalytic
activity of TiO2 powder (P25) by hydrothermal treatment. Journal
of Molecular Catalysis A: Chemical, 253(1): 112 –118.
11.
Yu,
J. G., Yu, H. G., Cheng, B., Zhao, X. J., Yu, J. C.and Ho, W. K. (2003). The
effect of calcination temperature on the surface microstructure and
photocatalytic activity of TiO2 thin films prepared by liquid phase
deposition. The Journal of Physical Chemistry B, 107(50): 13871 – 13879.
12.
Pei,
C. C. and Leung, W. W. F. (2013). Photocatalytic degradation of Rhodamine B by
TiO2/ZnO nanofibers under visible-light irradiation. Separation
and Purification Technology, 114: 108 – 116.
13.
Janitabar
Darzi, S. and Movahedi, M. (2014). Visible light photodegradation of phenol
using nanoscale TiO2 and ZnO impregnated with merbromin dye: A
mechanistic investigation. Iranian Journal of Chemistry and Chemical
Engineering, 33(2): 55 – 64.
14.
Abramović,
B. F., Anderluh, V. B., Topalov, A. S. and Gaál, F. F. (2004). Kinetics of
photocatalytic removal of 2-amino-5-chloropyridine from water. Acta
Periodica Technologica, 35: 79 – 86.
15.
Joint
Committee on Powder Diffraction Standards. Powder Diffraction File, Card
No.21-1272. Swarthmore, PA.
16.
Tayade,
R. J., Surolia, P. K., Kulkarni, R. G. and Jasra, R. V. (2007). Photocatalytic
degradation of dyes and organic contaminants in water using nanocrystalline
anatase and rutile TiO2. Science and Technology of Advanced
Materials, 8(6): 455 – 462.
17.
Hanaor,
D. A. and Sorrell, C. C. (2011). Review of the anatase to rutile phase
transformation. Journal of Materials Science, 46(4): 855 – 874.
18.
Amrollahi,
R., Hamdy, M. S. and Mul, G. (2014). Understanding promotion of photocatalytic
activity of TiO2 by Au nanoparticles. Journal of Catalysis,
319: 194 – 199.