Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 166 - 172
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-19
CeO2-TiO2 FOR
PHOTOREDUCTION OF CO2 TO METHANOL UNDER VISIBLE LIGHT: EFFECT OF
CERIA LOADING
(CeO2-TiO2
untuk Penurunan CO2 kepada Metanol di bawah Radiasi Cahaya
Nampak:Kesan Pemuatan Ceria)
Hamidah Abdullah1,2*, Nur Aminatulmimi Ismail1,
Zahira Yaakob2, Maksudur R. Khan1,
Syarifah Abd Rahim1
1Faculty of Chemical
and Natural Resources Engineering,
Universiti Malaysia Pahang, 26300, Kuantan, Pahang,
Malaysia
2
Department of
Chemical and Process Engineering, Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: hamidah@ump.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
A visible
light-driven photocatalyst, CeO2-TiO2 catalyst with
different ceria loading was synthesized by impregnation method between TiO2
powder and cerium oxide nanoparticles slurry. The prepared catalyst samples
were characterized by X-ray diffraction (XRD), surface area analysis, UV-vis
absorption spectroscopy and photoluminescence spectroscopy (PL). The band gap
of CeO2-TiO2 catalyst was found to be 2.15 – 2.4 eV. The
band gap reduction clearly indicated the successful loading of CeO2
on TiO2. The photocatalytic activity was determined by measuring the
photoreduction of CO2 to methanol in aqueous solution under visible
light. The effect of cerium loading in the range of 1 to 5 wt% on the
photocatalytic activity was studied and 2 wt% CeO2-TiO2
was found to exhibit the maximum photoactivity of 18.6 µmol/g.catalyst after 6
hours irradiation. Results showed that the prepared photocatalyst is visible
light active and may be used as effective catalyst in photoreduction of CO2
to methanol.
Keywords: metal oxide, photocatalyst, band gap,
nanoparticles
Abstrak
Fotomangkin yang boleh diaplikasi di bawah radiasi cahaya nampak iaitu
mangkin CeO2-TiO2 yang berbeza muatan ceria telah
disintesis dengan kaedah impregnasi serbuk titanium dioksida dengan mendakan
partikel nano cerium dioksida. Ciri
mangkin yang dihasilkan dikaji dengan menggunakan pembelauan sinar-X (XRD),
analisis luas permukaan, UV-Vis spektrofotometer dan spektroskopi fotoluminesen
(PL). Jurang tenaga mangkin CeO2-TiO2 adalah di antara
2.15 eV hingga 2.4 eV. Pengurangan jurang tenaga jelas menunjukkan pemuatan CeO2 ke atas TiO2 telah
berjaya. Aktiviti fotopemangkinan ditentukan melalui tindak balas penurunan gas
karbon dioksida (CO2) di dalam larutan akueus kepada metanol dan
dijalankan di bawah radiasi cahaya nampak.
Kesan pemuatan 1 hingga 5 peratus berat cerium ke atas TiO2 terhadap
aktiviti fotopemangkinan telah dikaji
dan CeO2-TiO2 dengan 2 peratus berat cerium didapati
menunjukkan fotosensitiviti maksimum iaitu penghasilan 18.6 µmol/g.mangkin
selepas 6 jam radiasi. Hasil kajian menunjukkan bahawa fotomangkin yang
dihasilkan adalah aktif di bawah cahaya nampak dan dijangka efektif untuk
penurunan CO2 kepada metanol.
Kata kunci: logam oksida, fotomangkin, jurang tenaga, partikel nano
References
1.
Corma,
A., and Garcia, H. (2013). Photocatalytic reduction of CO2
for fuel production: Possibilities and challenges. Journal of Catalysis, 308: 168 – 175.
2.
Zhang,
Y., Zhang, H.,
Xu, Y., and Wang, Y. (2003). Europium doped nanocrystalline
titanium dioxide: preparation, phase transformation and
photocatalytic properties. Journal of
Materials Chemistry, 13: 2261.
3.
Parida, K. M. and Sahu, N.
(2008). Visible light induced photocatalytic activity of rare
earth titania nano-composites. Journal of Molecular Catalysis A: Chemistry:
287: 151 – 158.
4.
Shi,
H., Zhang, T., An, T., Li, B. and Wang, X. (2012). Enhancement of photocatalytic activity of nano-scale TiO2
particles co-doped by rare earth elements and heteropolyacids. Journal of Colloid Interface Science, 380:
121 – 127.
5.
Aman,
N., Satapathy P. K., Mishra, T., Mahato, M., and Das, N.
N. (2012). Synthesis and photocatalytic
activity of mesoporous cerium doped TiO2 as visible light sensitive
photocatalyst. Materials Research
Bulletin, 47: 179 – 183.
6.
Matejova,
L., Koci, K., Reli, M., Capek, L., Hospodkova, A., Peikertova, P., Matej, Z., Obalova, L., Wach, A., Kustrowski, P. and Kotarba, A. (2014). Preparation, characterization and photocatalytic properties
of cerium doped TiO2: On the effect of Ce loading on the
photocatalytic reduction of carbon dioxide. Applied
Catalysis B: Environmental, 152: 172 – 183.
7.
Xiong,
Z., Zhao, Y., Zhang, J.
and Zheng, C. (2014). Efficient photocatalytic reduction of CO2 into liquid products over cerium
doped titania
nanoparticles synthesized by a sol–gel auto-ignited method. Fuel
Processing Technology, 135: 6 –
13.
8.
Abdullah,
H., Khan, M. R., Pudukudy, M., Yaakob, Z. and Ismail, N. M. (2015). CeO2-TiO2 as a visible light active catalyst for the
photoreduction of CO2 to methanol. Journal of Rare Earths, 33: 1155 – 1161.
9.
Liu,
Z., Guo, B., Hong, L. and Jiang, H. (2005). Preparation and characterization of cerium oxide doped TiO2
nanoparticles. Journal of Physics and
Chemistry of Solids, 66: 161 – 167.
10.
Ioanna,
G., Christina, F., Christos, K. and Soghomon,
B. (2006). Molecular structure and catalytic activity of
V2O5/TiO2 catalysts for the SCR of NO by NH3:
In situ Raman spectra
in the presence of O2, NH3,
NO, H2, H2O, and SO2. Journal of Catalysis. 239: 1 – 12.
11.
Xu,
A. W., Gao, Y. and Liu, H. Q. (2002). The preparation, characterization, and
their photocatalytic activities of rare-earth-doped TiO2
nanoparticles. Journal of Catalysis, 207:
151 – 157.
12.
Wu,
J., Liu, Q., Gao, P. and Zhu,
Z. (2011). Influence of praseodymium
and nitrogen co-doping on the photocatalytic activity of TiO2.
Materials Research Bulletin, 46: 1997
– 2003.
13.
Tahir,
M. and Amin, N. S. (2013). Advances in visible light responsive titanium
oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion Management, 76: 194 –
214.
14.
Inoue,
T., Fujishima, A., Konishi, S. and Honda, K. (1979). Photoelectrocatalytic
reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277: 637 – 638.