Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 188 - 196
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-22
CHEMICAL
AND PHYSICAL CHARACTERIZATION OF OIL PALM EMPTY FRUIT BUNCH
(Pencirian
Kimia dan Fizikal Bagi Tandan Kosong Buah Kelapa Sawit)
Nurul Suraya Rosli1, Shuhaida Harun1,2*, Jamaliah Md
Jahim1,2, Rizafizah Othaman3
1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment
2Research Centre
for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment
3School of Chemical Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: harun.shuhaida@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
The interest in Oil Palm Empty Fruit Bunch (OPEFB) as a promising
feedstock for bioconversion into value added products is growing fast, thus a
thorough analysis of its component becomes necessary. In this study, the
biomass chemical composition and physical feature of OPEFB was analysed to
explore and understand the potential of OPEFB as bioconversion feedstock.
National Renewable Energy Laboratory (NREL) standard protocols were used to
characterize and determine the chemical composition of OPEFB. Through this
protocol, the structural and non-structural constituents and their compositions
were determined based on unextracted and extracted native OPEFB. Structural
constituents include the carbohydrate, such as the glucan, xylan and arabinan,
and lignin accounted for 31.2%, 18.7%, 2.7%, and 27.7%, while the
non-structural constituents mainly refer to ash and extractives accounted for
0.10% and 11.87%. In addition, Fourier Transform Infrared Spectroscopy (FTIR)
and X-Ray Diffraction (XRD) analysis were also used to further characterize the
chemical structure of OPEFB. The FTIR spectral peaks representing the
functional groups cellulose, hemicellulose and lignin were observed. Through
XRD analysis, the crystallinity index of native OPEFB fiber was calculated
around 40%, while it was 37% for the powder form OPEFB. Nevertheless, the physical feature or surface
morphology of the OPEFB fiber has been study by using Scanning Electron
Microscopy (SEM). It shows a rigid strand’s surface and the presence of silica
bodies which commonly found in woody plant.
Keywords: lignocellulose,
composition, morphology, spectroscopy, crystallinity
Abstrak
Minat terhadap tandan kosong buah kelapa sawit (OPEFB) sebagai bahan
mentah secara penukaran bio telah menjanjikan hasil produk tambah nilai yang berkembang
pesat, oleh itu suatu analisis yang menyeluruh komponennya menjadi keperluan.
Dalam kajian ini, komposisi kimia biomas dan ciri-ciri fizikal OPEFB dianalisis
untuk meneroka dan memahami potensi OPEFB sebagai bahan mentah untuk penukaran
bio. Protokol piawai National Renewable Energy Laboratory (NREL) telah
digunakan untuk mencirikan dan menentukan komposisi kimia OPEFB. Melalui protokol
ini, juzuk struktur atau bukan struktur dan komposisi mereka telah ditentukan.
Juzuk struktur termasuk karbohidrat, seperti glukan, xilan dan arabinan dan
lignin menyumbang kepada 31.2%, 18.7%, 2.7%, dan 27.7%, manakala juzuk bukan
struktur terutamanya merujuk kepada abu dan ekstraktif menyumbang kepada 0.10%
and 11.87%. Di samping itu, analisis Spektroskopi Inframerah Transformasi
Fourier (FTIR) dan belauan sinar-X (XRD) juga digunakan untuk mencirikan lagi
struktur kimia OPEFB. Puncak spektrum FTIR yang mewakili kumpulan berfungsi
daripada selulosa, hemiselulosa dan lignin telah diperhatikan. Melalui analisis
XRD, indeks penghabluran gentian OPEFB asli dikira sekitar 40%, manakala ia
adalah 37% untuk OPEFB berbentuk serbuk. Walau bagaimanapun, ciri atau
permukaan fizikal morfologi serat OPEFB asli yang telah dikaji dengan
menggunakan Mikroskopi Imbasan Elektron (SEM). Ia menunjukkan permukaan helaian
yang tegar dan kehadiran badan-badan silika yang biasa ditemui dalam tumbuhan
berkayu.
Kata kunci: lignoselulosa, komposisi, morfologi, spektroskopi, penghabluran
References
1.
Hassan,
O., Tang, P. L., Maskat, M. Y., Md. Illias, R., Badri, K., Jahim, J. and
Mahadi, N. M. (2013). Optimization of pretreatments for the hydrolysis of oil
palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass and
Bioenergy, 56: 137 – 146.
2.
Rahman,
S. H., Choudhury, J. P., Ahmad, A. I. and Kamaruddin, A. H. (2007).
Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for
production of xylose. Bioresource Technology, 98: 554 – 559.
3.
Astimar,
A. A., Husin, M. and Anis, M. (2002). Preparation of cellulose from oil palm
empty fruit bunches via ethanol digestion: Effect of acid and alkali catalyst. Journal
of Oil Palm Research, 14: 9 – 14.
4.
Ming,
J. L., Ming, W. L., Gunawan, C. and Dale, B. (2010). Ammonia fiber expansion
(AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit
bunch fiber (EFBF) for cellulosic ethanol production. Applied Biochemical
Biotechnology, 162: 1847 –1857.
5.
Hamzah,
F., Idris, A. and Tan, K. S. (2011). Preliminary study on enzymatic hydrolysis
of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using
combination of cellulase and beta-1,4 glucosidase. Biomass and Bioenergy, 35:
1055 – 1059.
6.
Shuit,
S. H., Tan, K. T., Lee, K. T. and Kamaruddin, A. H. (2009). Oil palm biomass as
a sustainable energy source: A Malaysian case study. Energy, 34(9): 1225
– 1235.
7.
Sulaiman,
M. A., Abdullah, N., Gerhauser, H. and Shariff, A. (2011). An outlook of
Malaysian energy, oil palm industry and its utilization of wastes as useful
resource. Biomass Bioenergy, 35: 3775 – 3786.
8.
Hames,
B. R., Scarlata, C., Sluiter, A., Sluiter, J. and Templeton, D. (2008).
Preparation of sample for compositional analysis: Laboratory analytical
procedures (LAP). Colorado, United State: National Renewable Energy
Laboratory.
9.
Sluiter,
A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2005).
Determine of ash in biomass: Laboratory analytical procedures (LAP).
Colorado, United States: National Renewable Energy Laboratory.
10.
Sluiter,
A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008). Determination
of extractives in biomass. Golden, Colorado: National Renewable Energy Laboratory.
11.
Sluiter,
A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker,
D. (2008). Determination of structural carbohydrates and lignin in biomass.
Golden Colorado: National Renewable Energy Laboratory.
12.
Sluiter,
J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D. and Templeton, D. W.
(2010). Compositional analysis of lignocellulosic feedstock: Review and description of methods. Journal
of Agricultural Food Chemistry, 58(16): 9043 – 9053.
13.
Abdul,
P. M., Harun, S., Md. Jahim, J., Markom, M. and Hassan, O. (2011). Effect of
column's temperature and evaluation of RID and ELSD as a suitable ion exchange
HPLC detection method of simple sugars. Journal of Science and Technology, 49(58):
599 – 604.
14.
Segal,
L., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method
for estimating the degree of crystallinity of native cellulose using the X-ray
diffractometer. Textile Research Journal, 29(10): 786 – 794.
15.
Thammasouk,
K., Tandjo, D. and Penner, M. H. (1997). Influence of Extractives on the
Analysis of Herbaceous Biomass. Journal of Agricultural and Food Chemistry, 45(2):
437 – 443.
16.
Law,
K. N. and Jiang, X. (2001). Comparative papermaking properties of oil-palm
empty fruit bunch. Tappi Journal, 84: 1 – 13.
17.
Law,
K. N., Daud, W. W. and Ghazali, A. (2007). Morphology and chemical nature of
fiber strands of oil palm empty fruit bunch (OPEFB). Bioresources, 2:
351 – 362.
18.
Lins,
U., Barros, C. F., Da Cunha, M. and Miguens, F. C. (2002). Structure,
morphology and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma,
220: 89 – 96.
19.
Yoon,
C. J. and Kim, K. W. (2008). Anatomical descriptions of silicified woods from
madagascar and indonesia by scanning electron microscopy. Micron, 39(7):
815 – 831.
20.
Khalil,
H. S., Ismail, H., Rozman, H. D. and Ahmad, M. N. (2001). The effect of
acetylation on interfacial shear strength between plant fibres and various
matrices. European Polymer Journal, 37(5): 1037 – 1045.
21.
Xiao,
X., Bian, J., Li, M. F., Xu, H., Xiao, B. and Sun, R. C. (2014). Enhanced
enzymatic hydrolysis of bamboo (Dendrocalamus
gigantus munro) culm by hydrothermal pretreatment. Bioresource
Technology, 159: 41 – 47.
22.
Nazir,
M. S., Wahjoedi, B. A., Yussof, A. W. and Abdullah, M. A. (2013). Eco-friendly
extraction and characterization from oil palm empty fruit bunch. BioResources,
8(2): 2161 – 2172.
23.
Sun,
Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol
production: A review. Bioresource Technology, 83: 1 – 11.
24.
Ching,
Y. C. and Ng, T. S. (2014). Effect of preparation conditions on cellulose from
oil palm empty fruit bunch fiber. Bioresource Technology, 9(4): 6373 –
6385.
25.
Nomanbhay,
S. M., Hussain, R. and Palanisamy, K. (2013). Microwave-assisted alkaline
pretreatment and microwave assisted enzymatic saccharification of oil palm
empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of
Sustainable Bioenergy System, 3: 7 – 17.
26.
Pandey,
K. K. (1999). A study of chemical of soft and hardwood and wood polymers by
FTIR spectroscopy. Journal of Applied Polymer, 71: 1969 – 1975.
27.
Kargarzadeh,
H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. and Sheltami, R.
(2012). Effects of hydrolysis conditions on the morphology, crystallinity, and
thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose,
19(3): 855 – 866.