Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 197 - 203
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-23
PALM KERNEL
SHELL-DERIVED BIOCHAR AND CATALYST FOR BIODIESEL PRODUCTION
(Biochar dan
Pemangkin Berasaskan Tempurung Kelapa Sawit untuk Penghasilan Biodiesel)
Dayang Nuradila1,
Wan Azlina Wan Ab Karim Ghani1*, Azil Bahari Alias2
1Department
of Chemical and Environmental Engineering, Faculty of Engineering,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Faculty
of Chemical Engineering,
Universiti Teknologi MARA,40450
Shah Alam, Selangor, Malaysia
*Corresponding author: wanazlina@upm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
A promising catalyst based on a biomass pyrolysis by-product, biochar,
has been developed to produce biodiesel. A carbon-based solid acid catalysts
were prepared by sulfonating pyrolysis char with concentrated sulfuric acids.
The catalysts were characterized using thermogravimetric analyses (TGA),
scanning electron microscope (SEM), Fourier transform infrared spectroscopy
(FTIR) and surface area analyzer. Prepared catalysts were studied for their
ability to catalyze transesterification of vegetable oils. The catalyst
sulfonated with the concentrated sulfuric acid demonstrated considerable conversion
in free fatty acid esterification. Further investigation of the catalyst was
conducted to determine the effect of sulfonation time (1 and 3 hours) and
surface area on the transesterification reactions. The surface area of the
biochar was increased by chemical treatment using 10M potassium hydroxide through
porosity development. Results showed the catalyst with the highest surface area
and acid density to have the highest catalytic activity to produce biodiesel
from canola oil in the presence of methanol as the reagent. The effects of
alcohol to oil (A:O) molar ratio, reaction time and catalyst loading on the
esterification reaction catalyzed by the sulfonated biochar were also
investigated. Results revealed that more than 90% biodiesel yield was achieved
at 15 wt% of catalyst amount, methanol to oil molar ratio was 9:1 and the
agitation rate was 700 rpm. As a conclusion, the prepared biochar-based
catalyst has a tremendous potential to be used in a process converting a high
Free Fatty Acids (FFA) feedstock to biodiesel.
Keywords: transesterification,
vegetable oil, palm kernel shell, biochar-based catalyst
Abstrak
Pemangkin yang berasaskan pirolisis biomass produk sampingan, biochar,
telah dibangunkan untuk penghasilan biodiesel. Pemangkin asid pepejal
berasaskan karbon telah dihasilkan daripada sulfonasi pirolisis char dengan
asid sulfurik pekat. Pemangkin telah dicirikan menggunakan analisis termogravimetri
(TGA), mikroskop imbasan elektron (SEM), spektroskopi infra merah transformasi Fourier (FTIR)
dan penganalisa luas permukaan. Pemangkin yang tersedia telah dikaji
keupayaannya untuk menjadi pemangkin transesterifikasi minyak sayur-sayuran.
Pemangkin sulfonat dengan asid sulfurik pekat menunjukkan penukaran ini boleh
dipertimbangkan dalam pengesteran asid lemak bebas. Kajian lanjut terhadap
pemangkin telah dijalankan untuk menentukan kesan masa sulfonasi (1 dan 3 jam) dan luas permukaan pada tindak
balas transesterifikasi. Luas permukaan biochar telah meningkat melalui rawatan
kimia menggunakan 10M kalium hidroksida melalui pembangunan liang. Hasil kajian
telah menunjukkan pemangkin dengan luas permukaan dan ketumpatan asid yang
paling tinggi mempunyai aktiviti pemangkinan tertinggi bagi pengeluaran
biodiesel daripada minyak kanola dengan kehadiran metanol sebagai reagen.
Nisbah molar kesan alkohol kepada minyak (A:O), masa tindak balas dan muatan
pemangkin keatas tindak balas pengesteran yang dimangkinkan oleh biochar
sulfonat turut disiasat. Hasil kajian menunjukkan bahawa lebih daripada 90% hasil
biodiesel telah dicapai pada 15 wt% daripada jumlah pemangkin, nisbah molar
metanol kepada minyak adalah 9:1 dan kadar pergolakan adalah 700 rpm.
Kesimpulannya, pemangkin berasaskan biochar yang dihasilkan mempunyai potensi
yang amat besar untuk digunakan dalam proses penukaran bahan mentah asid lemak
bebas tinggi (FFA) kepada biodiesel.
Kata kunci: transeterifikasi, minyak
sayuran, tempurung kelapa sawit, pemangkin berasaskan biochar
References
1. Di Serio, M., Tesser,
R., Pengmei, L. and Santacesaria, E. (2008). Heterogeneous catalysts for
biodiesel production. Energy & Fuels, 22(1): 207 – 217.
2. Ejikeme, P. M.,
Anyaogu, I. D., Ejikeme, C. L., Nwafor, N. P., Egbuonu, C. A. C., Ukogu, K. and
Ibemesi, J. A. (2010). Catalysis in biodiesel production by transesterification
processes-An insight. Journal of Chemistry, 7(4): 1120 – 1132.
3. Hara, M. (2009).
Environmentally benign production of biodiesel using heterogeneous catalysts. ChemSusChem, 2(2): 129 – 135.
4. Rebitanim, N. Z.,
Ghani, W. A. W. A. K., Rebitanim, N. A. and Salleh, M. A. M. (2013). Potential
applications of wastes from energy generation particularly biochar in Malaysia. Renewable and
Sustainable Energy Reviews, 21: 694 – 702.
5. Mahmoud, D. K., Salleh,
M. A. M. and Karim, W. A. (2012). Characterization and evaluation of
agricultural solid wastes as adsorbents: A review. Journal of Purity, Utility
Reaction and Environment 1(9): 451 – 459.
6. Srilatha, K.,
Issariyakul, T., Lingaiah, N., Sai Prasad, P. S., Kozinski, J. and Dalai, A. K.
(2010). Efficient esterification and transesterification of used cooking oil
using 12-tungstophosphoric acid (TPA)/Nb2O5 Catalyst. Energy
& Fuels, 24(9): 4748 – 4755.
7. Lien, Y. S., Hsieh, L.
S. and Wu, J. C. (2010). Biodiesel synthesis by simultaneous esterification and
transesterification using oleophilic acid catalyst. Industrial &
Engineering Chemistry Research, 49(5): 2118 – 2121.
8. Bamgboye, A. I.
and Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from
the fatty acid methyl ester (FAME) composition. International Agrophysics,
22(1): 21 – 29.