Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 221 - 230

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-26

 

 

 

POLYETHERSULFONE/PLURONIC F127 BLENDED NANOFILTRATION MEMBRANES FOR XYLITOL PURIFICATION

 

(Membran Penurasan-Nano Campuran Polietersulfon/Pluronik F127 untuk Penulinan Xilitol)

 

Khalefa A. Faneer1,2, Rosiah Rohani1*, Abdul Wahab Mohammad1

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Environment Engineering,

High Institute for Comprehensive Professions, Bent Baya, Wadi Al-Ajal, Libya.

 

*Corresponding author: rosiah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Obtaining high purity of xylitol is a stone corner in medicine industries. Many conventional techniques (crystallization and adsorption) were used for xylitol purification from fermentation media. Recently, membrane technology received a great attention due to its high performance in xylitol purification. Among renowned copolymers used for polymer blending to produce membranes, pluronic is receiving much attention due to its strong hydrophilic characteristic and could work as pore former and surface modifier. Polyethersulfone (PES) polymer has been reportedly used for polymer blending as it possesses mechanical and chemical stabilities. Therefore, this work demonstrates the preparation of nanofiltration (NF) membrane using: (1) PES and (2) PES blended with 1.71% and 5% of Pluronic (F127), via phase inversion method. All fabricated membranes were subjected to investigations such as contact angle for hydrophilicity and water and solution flux for membrane performance. The findings showed increasing in water flux from 24.6 L/m2.h to 70.2 L/m2.h as 5% of Pluronic added. Further, the hydrophilicity improved from 80.1 ± 1.93o to 72 ±0.3o and 67.6 ± 0.72o when 1.71 and 5% of Pluronic F127 added respectively. Therefore, the addition of Pluronic f127 has a great impact on PES membrane for xylitol permeation.    

 

Keywords:  polyethersulfone, pluronic F127, xylitol, NF membrane, purification

 

Abstrak

Memperoleh ketulenan yang tinggi bagi xilitol merupakan salah satu batu loncatan di dalam industri perubatan. Terdapat banyak teknik konvensional (penghabluran dan penjerapan) yang telah digunakan untuk penulenan xilitol daripada media penapaian. Baru-baru ini, teknologi membran banyak menarik perhatian dengan prestasinya yang bagus dalam penulenan xilitol. Antara kopolimer yang sering digunakan untuk campuran polimer dalam penghasilan membran adalah pluronik yang telah menerima perhatian kerana sifat hidrofiliknya dan boleh membantu dalam pembentukan liang serta pengubahsuai permukaan membran. Polimer polietersulfon (PES) telah dilaporkan digunakan untuk polimer campuran kerana ia mempunyai kestabilan mekanikal dan kimia. Oleh itu, kerja ini menunjukkan penyediaan membran penurasan-nano (NF) menggunakan: (1) PES dan (2) PES dicampur dengan 1.71% dan 5% Pluronik (f127), melalui kaedah fasa songsangan. Kesemua membran yang dihasilkan dicirikan menggunakan sudut sentuhan untuk sifat hidrofilik dan fluks air serta larutan bagi prestasi membran. Hasil kajian menunjukkan peningkatan dalam fluks air daripada 24.6 L/m2.h kepada 70.2 L/m2.h apabila 5% Pluronik F127 ditambah. Selanjutnya, sifat hidrofilik membran bertambah baik iaitu daripada 80.1 ± 1.93o kepada 72 ± 0.3o dan 67.6 ± 0.72o apabila 1.71 dan 5% Pluronik F127 ditambah. Didapati penambahan Pluronik F127 memberi kesan yang besar ke atas membran PES untuk penyerapan xilitol.

 

Kata kunci:  polietersulfon, pluronik F127, xylitol, membran NF, penulenan

 

References

1.       da Silva, S. S. and Chandel, A. K. (2012). d-Xylitol: Fermentative product, application and commercialization. Springer.

2.       Mussatto, S. I., Santos, J. C., Ricardo Filho, W. C. and Silva, S. S. (2006). A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate. Journal of Chemical Technology and Biotechnology, 81(11): 1840 – 1845.

3.       Rafiqul, I. S. M. and Mimi Sakinah, A. M. (2012). A perspective bioproduction of xylitol by enzyme technology and future prospects. International Food Research Journal, 19(2): 405 – 408.

4.       Martinez, E. A., e Silva, J. B. D. A., Giulietti, M. and Solenzal, A. I. N. (2007). Downstream process for xylitol produced from fermented hydrolysate. Enzyme and Microbial Technology, 40(5): 1193 – 1198.

5.       Affleck, R. P. (2000). Recovery of xylitol from fermentation of model hemicellulose hydrolysates using membrane technology. Virginia Polytechnic Institute and State University.

6.       Bolong, N., Saad, I., Ismail, A. F., Salim, M. R., Rana, D. and Matsuura, T. (2011). Charge property modeling of nanofiltration hollow fiber membranes. International Journal of Simulation: Systems, Science and Technology, 12(3): 12 – 16.

7.       Li, J. F., Xu, Z. L., Yang, H., Yu, L. Y.and Liu, M. (2009). Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 255(9), 4725 –4732.

8.       Zhao, W., Huang, J., Fang, B., Nie, S., Yi, N., Su, B., Li, H. and Zhao, C. (2011). Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. Journal of Membrane Science, 369(1): 258 – 266.

9.       Su, B., Zhao, C. and Sun, S. (2011). Polyethersulfone hollow fiber membranes for hemodialysis. INTECH Open Access Publisher.

10.    Wang, Y. Q., Su, Y. L., Ma, X. L., Sun, Q. and Jiang, Z. Y. (2006). Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. Journal of Membrane Science, 283(1): 440 – 447.

11.    Susanto, H. and Ulbricht, M. (2009). Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. Journal of Membrane Science, 327(1): 125 – 135.

12.    Susanto, H., Buchori, L., Sumardiono, S., Fajar, B., Istirokhatun, T. and Widiasa, I. N. (2009). Ultrafiltration as pretreatment of reverse osmosis: Low fouling ultrafiltration membrane prepared from polyethersulfone–amphiphilic block copolymer blend. Reaktor, 12(4): 203 – 210.

13.    Liu, C., Yun, Y., Wu, N., Hua, Y. and Li, C. (2013). Effects of amphiphilic additive Pluronic F127 on performance of poly (ether sulfone) ultrafiltration membrane. Desalination and Water Treatment, 51(19-21): 3776 – 3785.

14.    Loh, C. H., Wang, R., Shi, L. and Fane, A. G. (2011). Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives. Journal of Membrane Science, 380(1): 114 – 123.

15.    Zhang, Y., Su, Y., Chen, W., Peng, J., Dong, Y. and Jiang, Z. (2011). A feasible post-treatment of drying and rewetting for preparation of high-flux Pluronic F127/polyethersulfone nanofiltration membranes. Industrial & Engineering Chemistry Research, 50(8): 4678 – 4685.

16.    Zhao, W., Su, Y., Li, C., Shi, Q., Ning, X. and Jiang, Z. (2008). Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science, 318(1): 405 – 412.

17.    Wang, Y. Q., Su, Y. L., Sun, Q., Ma, X. L. and Jiang, Z. Y. (2006). Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. Journal of Membrane Science, 286(1): 228 – 236.

18.    Lalia, B. S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326: 77 – 95.

19.    Ng, L. Y., Leo, C. P. and Mohammad, A. W. (2011). Optimizing the incorporation of silica nanoparticles in polysulfone/poly (vinyl alcohol) membranes with response surface methodology. Journal of Applied Polymer Science, 121(3): 1804 – 1814.

20.    Rohani, R., Hyland, M. and Patterson, D. (2011). A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science, 382(1): 278 – 290.

21.    Vatsha, B., Ngila, J. C. and Moutloali, R. M. (2014). Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification. Physics and Chemistry of the Earth, Parts A/B/C, 67: 125 – 131.

22.    Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S. and Astinchap, B. (2011). Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. Journal of Membrane Science, 375(1): 284 – 294.

23.    Mulder, J. (2012). Basic principles of membrane technology. Springer Science & Business Media.

24.    Kochkodan, V., Johnson, D. J., and Hilal, N. (2014). Polymeric membranes: Surface modification for minimizing (bio) colloidal fouling. Advances in Colloid and Interface Science, 206: 116 – 140.

 




Previous                    Content                    Next