Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 261 - 266
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-30
EFFECTS OF AGITATION
CONDITIONS ON BACTERIAL CELLULOSE PRODUCTION BY Acetobacter xylinum 0416 IN FERMENTATION OF MATURED COCONUT WATER
MEDIUM
(Kesan Goncangan ke atas
Penghasilan Selulosa Bakteria oleh Acetobacter
xylinum 0416 Melalui Fermentasi Air Kelapa Tua)
Faezah Esa, Norliza Abd. Rahman*, Mohd Sahaid Kalil, Siti Masrinda
Tasirin
Department of Chemical and Process
Engineering,
Faculty of Engineering and Built
Environment,
University of Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: norlizajkkp@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Bacterial
cellulose (BC), a pure form of three-dimensional biopolymer is gaining
extensive interest due to its unique physical and mechanical properties. The
effects of different agitation conditions on BC synthesis by Acetobacter xylinum 0416 have been
compared. Fermentations were carried out at 150 and 200 rpm using rotatory
incubator shaker and rotatory shaker in a constant temperature room of 30 ºC.
Matured coconut water was used as a sustainable medium due to its low cost and
availability. The medium was adjusted to pH 4.5 or pH 5.5 and BC pellets were
collected after 7 days of fermentation. The constant temperature room appeared
to has fluctuate degree of heat during fermentation up to 37 °C and suppressed
the BC production. In rotatory incubator shaker, the BC produced have
insignificant different in comparison to pH and rotation speed. These results
indicate that matured coconut water has potential as the carbon source for BC
synthesis and optimization of fermentation temperature is important to produce
enormous yield of BC.
Keywords: bacterial cellulose, matured coconut
water, fermentation, agitation speed
Abstrak
Selulosa
bakteria (SB) iaitu sejenis tiga-dimensi biopolimer
sedang mendapat tumpuan yang meluas disebabkan oleh sifat fizikal dan
mekanikalnya yang unik. Kesan goncangan yang berbeza terhadap sintesis SB oleh
bakteria Acetobacter xylinum 0416
telah dibandingkan. Proses fermentasi telah dilakukan pada kelajuan 150 rpm dan
200 rpm menggunakan inkubator penggoncang berputar yang tertutup dan inkubator
penggoncang berputar terbuka yang terletak di dalam bilik malar pada suhu tetap
30 °C. Air kelapa tua digunakan sebagai medium mapan kerana mudah diperoleh
pada kos yang rendah. Media ini dilaraskan pada pH 4.5 atau pH 5.5 dan pelet BS
dikumpulkan selepas 7 hari fermentasi. Suhu bilik malar didapati berubah-ubah
sepanjang fermentasi sehingga meningkat kepada 37 °C dan membantutkan
penghasilan SB. Melalui penggunaan inkubator penggoncang berputar yang tertutup,
SB yang terhasil mempunyai perbezaan kuantiti yang tidak signifikan dari segi
pH dan kelajuan goncangan. Keputusan ini menunjukkan air kelapa tua mempunyai
potensi sebagai sumber karbon bagi sintesis SB dan pengoptimuman suhu
fermentasi adalah penting untuk menghasilkan SB yang banyak.
Kata kunci: bakteria selulosa, air kelapa tua, fermentasi, kelajuan
goncangan.
References
1.
Ummartyotin,
S. and Manuspiya H. (2015). A critical review on cellulose: From fundamental to
an approach on sensor technology, Renewable
and Sustainable Energy Reviews, 41: 402 – 412.
2.
Sengun,
I. Y. and Karabiyikli, S. (2011). Importance of acetic acid bacteria in food
industry. Food Control, 5: 647 – 656.
3.
Wu,
J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q. and Guo.
S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose
composites for slow-released antimicrobial wound dressing. Carbohydrate Polymer, 102: 762 – 771.
4.
Pérez,
C. D., De’Nobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M. and
Rojas, A. M. (2013). High methoxyl pectin–methyl cellulose films with
antioxidant activity at a functional food interface. Journal of Food Engineering, 116: 162 – 169.
5.
Lin,
S. B., Chen, L. C. and Chen, H. H. (2011). Physical characteristics of surimi
and bacterial cellulose composite gel. Journal
of Food Process Engineering, 34: 1363 – 1379.
6.
Shi,
Z., Zhang, Y., Phillips, G. O. and Yang, G. (2014). Utilization of bacterial
cellulose in food. Food Hydrocolloids,
35: 539 – 545.
7.
Zhou,
T., Chen, D., Jiu, J., Nge, T. T., Sugahara, T., Nagao, S., Koga, H. and Nogi.
M. (2013). Electrically conductive bacterial cellulose composite membranes
produced by the incorporation of graphite nanoplatelets in pristine bacterial
cellulose membranes. Polymer Letters,
7(9): 756 – 766.
8.
Gadim,
T. D. O., Figueiredo, A. G. P. R., Rosero-Navarro, N. C., Vilela, C., Gamelas,
J. A. F., Barros-Timmons, A., Neto, C. P., Silvestre, A. J. D., Freire, C. S.
R. and Figueiredo, F. M. L. (2014). Nanostructured bacterial
cellulose–poly(4-styrene sulfonic acid) composite membranes with high storage
modulus and protonic conductivity. ACS
Applied Material Interfaces, 6(10): 7864 – 7875.
9.
Sivapragasam
A. (2008). Coconut in Malaysia – Current development and potential for
re-vitalization. 2nd International Plantation Industry Conference
and Exhibition (IPICEX2008).
10.
Food
and Agriculture Organization of The United Nations Statistics Division (2015).
Access from http://faostat3.fao.org/compare/E [28 July 2015].
11.
Prades,
A., Dornier, M., Diop, N. and Pain, J. P. (2011). Coconut water uses,
composition and properties: A review. Fruits,
67 (2):87 – 107.
12.
Jagannath,
A., Kalaiselvan, A., Manjunatha, S. S., Raju, P. S. and Bawa, A. S. (2008). The
effect of pH, sucrose and ammonium sulphate concentrations on the production of
bacterial cellulose (Nata-de-coco) by Acetobacter
xylinum. World Journal of Microbiology
and Biotechnology, 24: 2593 – 2599.
13.
Vandamme
E. J., de Baets, S., Vanbaelen, A., Joris, K. and de Wulf, P. (1998). Improved
production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59: 93
– 99.
14.
Cavka,
A., Guo, X., Tang, S. Winestrand, S., Jonsson, L. J. and Hong, F. (2013).
Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels. 6: 25 – 35.
15.
Huang,
C., Yang, X. Y., Xiong, L., Guo, H. J., Luo, J., Wang, B., Zhang, H. R., Lin,
X. Q. and Chen, X. D. (2013). Evaluating the possibility of using
acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose
production by Gluconacetobacter xylinus. Letters in Applied Microbiology, 60(5):
491 – 496.
16.
Hu,
Y. and Catchmark, J. M. (2010). Formation and characterization of spherelike
bacterial cellulose particles produced by Acetobacter
xylinum JCM 9730 strain. Biomacromolecules,
11:1727 – 1734.