Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 248 - 260

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-29

 

 

 

SYNTHESIS, CHARACTERIZATION AND CATALYTIC PERFORMANCE OF CERIA-SUPPORTED COBALT CATALYST FOR METHANE DRY REFORMING TO SYNGAS

 

(Sintesis, Pencirian dan Prestasi Mangkin Kobalt Sokongan Ceria untuk Penghasilan Semula Metana Kontang Kepada Gas Sintesis)

 

Bamidele V. Ayodele1,2, Mohd Nasir Nor Shahirah1,2 , Maksudur R. Khan1, Chin Kui Cheng1,2*

 

1Faculty of Chemical & Natural Resources Engineering

2Centre of Excellence for Advanced Research in Fluid Flow (CARIFF)

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Malaysia

 

*Corresponding author: chinkui@ump.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this study the synthesis, characterization and catalytic performance of CeO2 (Ceria) supported Co catalyst was investigated.  First, the ceria was synthesized by direct thermal decomposition of Ce(NO3)3.6H2O and subsequently impregnated with 20 wt.% Co using aqueous solution of Co(NO3)2.6H2O as a precursor. The synthesized catalyst was characterized using TGA, N2-adsorption-desorption, X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscope (FESEM-EDX), and Fourier Transformation Infrared (FTIR). The catalytic property of the ceria-supported cobalt catalyst was tested in methane dry reforming using a stainless steel fixed bed reactor. The dry reforming reaction was performed at the temperature range of 923-1023 K under a controlled atmospheric pressure and constant gas hourly space velocity (GHSV) of 30000 h-1. The effects of reactant (CH4 and CO2) feed ratio was investigated on reactants conversion, product yields, and selectivity. The ceria-supported cobalt catalyst recorded highest catalytic activity at a CH4: CO2 ratio of 0.9 and temperature of 1023 K. The highest values of 79.5% and 87.6% were recorded for the CH4 and CO2 conversions respectively. Furthermore, highest yields of 41.98% and 39.76%, as well as selectivity of 19.56% and 20.72%, were obtained for H2 and CO respectively. Syngas ratio of 0.90 was obtained from the dry reforming of methane, making it suitable as feedstock for Fischer-Tropsch synthesis (FTS).

 

Keywords:  ceria, cobalt, Fischer-Trosch synthesis, methane dry reforming, syngas

 

Abstrak

Dalam kajian ini, sintesis, pencirian berserta prestasi tindakbalas pemangkin Co/CeO2 telah dijalankan. Terdahulu, ceria disintesis daripada penguraian terma secara langsung ke atas Ce(NO3)3.6H2O, diikuti oleh formulasi dengan 20% logam Co menggunakan larutan akueus Co(NO3)2.6H2O sebagai pelopor. Mangkin yang diperolehi dicirikan dengan menggunakan kaedah TGA, N2-penjerapan penyaherapan, pembelauan sinar X (XRD), Mikroskop Pengimbas Elektron Pancaran Medan – Sinar-X Serakan Tenagan (FESEM-EDX) dan Inframerah Tranformasi Fourier (FTIR). Prestasi pemangkin Co/CeO2 telah diuji untuk tindakbalas penghasilan metana kontang di dalam reaktor keluli tahan karat. Tindakbalas kimia tersebut telah dijalankan pada suhu berjulat daripada 923-1023 K, tekanan 1 atm serta GHSV bersamaan 30000 h-1. Kesan nisbah reaktan (CH4 and CO2) terhadap penukaran reaktan serta hasil dan pemilihan produk telah disiasat. Mangkin Co/CeO2 mencatatkan aktiviti pemangkin paling tinggi pada nisbah CH4/CO2 bersamaan 0.9 dan suhu 1023 K. Penukaran CH4 and CO2 mencatatkan nilai tertinggi bersamaan 79.5% dan 87.6%. Tambahan pula, hasil tertinggi bersamaan 37.6% dan 40% berserta sifat pemilihan bersamaan 19.56% dan 20.72% untuk H2 dan CO telah direkodkan. Nisbah gas sintesis bersamaan 0.9 telah diperolehi daripada penghasilan semula metana kontang bersesuaian untuk tindakbalas sintesis Fischer-Trosch.

 

Kata kunci:  ceria, kobalt, sintesis Fischer-Tropsch, penghasilan semula metana, gas sintesis

 

References

1.       Guo, S., Shao, L., Chen, H., Li, Z., Liu, J. B., Xu, F. X., Li, J. S., Han, M. Y., Meng, J., Chen, Z. M. and Li, S. C. (2007). Inventory and input–output analysis of CO2 emissions by fossil fuel consumption in Beijing. Ecological Informatics, 12: 93 – 100.

2.       Shearer, C., Bistline, J., Inman, M. and Davis, S. J. (2014). The effect of natural gas supply on US renewable energy and CO2 emissions. Enviromental Research Letters, 9(9): 1 - 12.

3.       Clarke, L., Kyle, P., Wise, M., Calvin, K., Edmonds, J., Kim, S., Placet, M. and Smith, S. (2008). CO2 Emissions mitigation and technological advance : An updated analysis of advanced technology scenarios PNNL Report Pacific Northwest National Laboratory, Richmond.

4.       Ang, C. T., Morad, N.,  Ismail, M. T. and Ismail, N. (2013). Projection of carbon dioxide emissions by energy consumption and transportation in Malaysia: A time series approach. Journal of Energy Technologies and Policy, 3: 1 - 10.

5.       Korre A, Nie Z. and Durucan S. (2010).  Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. International Journal of Greenhouse Gas Control , 4: 289 – 300.

6.       Samimi, A. and Zarinabadi S. (2012). Reduction of greenhouse gases emission and effect on environment. Journal of American Science, 8: 1011 - 1015.

7.       Mathiesen,  B. V., Lund, H. and Karlsson K.. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy, 88: 488 – 501.

8.       Ross, J. R. H. (2015). Natural gas reforming and CO2 mitigation. Catalysis Today, 100: 151 –158.

9.       Braga, T. P., Santos, R. C., Sales, B. M., da Silva, B. R., Pinheiro, A. N., Leite, E. R. and Valentini A. (2014). CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology. Chinese Journal of  Catalysis, 35: 514 –523.

10.    Aasberg-Petersen, K., Dybkjær, I., Ovesen, C. V., Schjødt, N. C., Sehested, J. and Thomsen, S. G. (2011). Natural gas to synthesis gas - catalysts and catalytic processes. Journal of Natural Gas Science and Engineering, 3: 423 – 459.

11.    Verykios, X. E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. International Journal of Hydrogen Energy, 28: 1045 – 1063.

12.    Sharifi, M., Haghighi, M., Rahmani, F. and Karimipour, S. (2014). Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3–ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods. Journal of Natural Gas Science and Engineering,21: 993 – 1004.

13.    Ba, K, Oszk, A., Kecsk, T. and Erd A. (2014).  Dry reforming of CH4 on Rh doped Co /Al2O3 catalysts Catalysis Today, 228: 123 - 130.

14.    Ayodele, B. V., Khan, M. R, Lam, S. S. and Cheng, C. K. (2016). Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. International Journal of Hydrogen Energy, 41: 4603 - 4615.

15.    Khodakov, A. Y, Chu, W. and Fongarland, P. (2007). Advances in the development of novel cobalt Fischer − Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5): 1692 - 1744.

16.    Yao, Y., Liu, X., Hildebrandt, D. and Glasser D. (2011). Fischer-Tropsch synthesis using H2/CO/CO2 syngas mixtures over an iron catalyst. Industrial Engineering Chemical Research, 50: 11002 –11012.

17.    Lee, J. H., You, Y. W., Ahn, H. C., Hong, J. S., Kim, S. B., Chang, T. S. and Suh, J. K. (2014). The deactivation study of Co–Ru–Zr catalyst depending on supports in the dry reforming of carbon dioxide. Journal of Industrial and Engineering Chemistry, 20: 284 – 289.

18.    Ruckenstein, E. and Wang, H. Y. (2002). Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts. Journal of Catalysis, 205: 289 – 293.

19.    Zhang, J., Wang, H. and Dalai  A. (2007). Development of stable bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis, 249: 300 – 310.

 

20.    Corthals, S., Witvrouwen, T., Jacobs, P. and Sels B. (2011). Development of dry reforming catalysts at elevated pressure: D-optimal vs. full factorial design. Catalysis Today, 159: 12 – 24.

21.    Li, D., Nakagawa, Y. and Tomishige K. (2011). Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A General, 408: 1 – 24.

22.    Özkara-Aydınoğlu, Ş. and Aksoylu, A. E. (2010). CO2 reforming of methane over Pt–Ni/Al2O3 catalysts: Effects of catalyst composition, and water and oxygen addition to the feed. International Journal of Hydrogen Energy, 36: 2950 –2959.

23.    Wisniewski, M., Boréave, A. and Gélin P. (2005). Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x. Catal Communications,  6: 596 – 600.

24.    Kim, S., Qadir, K., Jin, S., Reddy, A. S., Seo, B., Mun, B. S., Joo, S. H. and Park, J. Y. (2012). Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: Role of surface oxide. Catalysis Today, 185:131 – 137.

25.    Budiman, A.W., Song, S-H., Chang, T-S., Shin, C-H. and Choi M-J. (2012). Dry reforming of methane over cobalt catalysts: A literature review of catalyst development. Catal Surveys from Asia, 16: 183 –197.

26.    Hadian, N., Rezaei, M., Mosayebi, Z. and Meshkani, F. (2012). CO2 reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. Journal of Natural Gas Chemistry, 21: 200 – 206.

27.    Sehested, J. (2005). Four challenges for nickel steam-reforming catalysts. Catalysis Today, 111: 103 –110.

28.    Oliveira, H., Franceschinib, D. and Passos F. (2014). Cobalt catalyst characterization for methane decomposition and carbon nanotube growth. Journal of Brazilian Chemical Society, 25: 2339 – 2349.

29.    Frontera, P, Macario, A., Aloise,  A., Antonucci, P. L., Giordano, G. and Nagy, J. B. (2013). Effect of support surface on methane dry-reforming catalyst preparation. Catalysis Today, 218: 18 – 29.

30.    Shi, L., Yang, G., Tao, K., Yoneyama, Y., Tan, Y. and Tsubaki N. (2013). An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Account of Chemical Research, 46: 1838 – 1847.

31.    Zhang, B., Cai, W., Li, Y., Xu, Y. and Shen W. (2008). Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst. International Journal of Hydrogen Energy, 33: 4377 – 4386.

32.    Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y. and Shen, W. (2006). Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catalysis Communications, 7: 367 – 372.

33.    da Silva, A. M., de Souza, K. R., Mattos, L. V., Jacobs, G., Davis, B. H. and Noronha,  F. B. (2011). The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol. Catalysis Today, 164: 234 – 239.

34.    Luisetto, I, Tuti, S. and Di Bartolomeo E. (2012). Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 37: 15992 – 15999.

35.    Abasaeed, A. E, Al-fatesh, A. S, Naeem, M. A, Ibrahim, A. A. and Fakeeha, A. H. (2015). Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 6818 – 6826.

36.    Ayodele, B. V., Hossain, M. A., Chong, S. L, Soh, J. C, Abdullah, S., Khan, M. R. and Cheng, C. K. (2016). Non-isothermal kinetics and mechanistic study of thermal decomposition of light rare earth metal nitrate hydrates using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 125(1): 423 - 435.

37.    Lee, S. S, Zhu, H., Contreras, E. Q, Prakash, A., Puppala, H. L. and Colvin, V. L. (2012). High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications. Chemistry Materials, 24: 424 – 432.

38.    Foo, S. Y. (2012). Oxidative dry reforming of methane over alumina-supported Co-Ni catalyst systems. Doctor of Philosophy Thesis, University of New South Wale, Australia.

39.    Wang, H, Liu, Y., Wang, L. and Qin, Y. N. (2008).  Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal, 145: 25 – 31.

40.    Zeng, S., Fu, Xiaojuan Z., Tiezhuang W. and Xiaoman S. H. (2014). Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4. Fuel Process Technology, 114: 4 – 10.

41.    Zeng, S., Zhang, X. Fu, X. Zhang, L. Su, H. and Pan, H. (2012). Co/CexZr1−xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane. Applied Catalysis B, Environmental, 136: 308 – 316.

42.    Sajjadi, S. M, Haghighi, M. and Rahmani, F. (2014). Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni-Co/Al2O3-ZrO2 nanocatalyst: Effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. Journal of Sol-Gel Science Technology, 70(1): 111 –124.

43.    San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M. J. and Román-Martínez, M. C. (2009). Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A General, 371: 54 – 59.

44.    Zeng, S., Zhang, L., Zhang, X., Wang, Y., Pan, H. and Su, H. (2012). Modification effect of natural mixed rare earths on Co/γ-Al2O3 catalysts for CH4/CO2 reforming to synthesis gas. International Journal of Hydrogen Energy, 37: 9994 – 10001.

 

 




Previous                    Content                    Next