Malaysian Journal of Analytical Sciences Vol 21 No 1
(2017): 248 - 260
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-29
SYNTHESIS,
CHARACTERIZATION AND CATALYTIC PERFORMANCE OF CERIA-SUPPORTED COBALT CATALYST
FOR METHANE DRY REFORMING TO SYNGAS
(Sintesis, Pencirian dan
Prestasi Mangkin Kobalt Sokongan Ceria untuk Penghasilan Semula Metana Kontang
Kepada Gas Sintesis)
Bamidele V. Ayodele1,2,
Mohd Nasir Nor Shahirah1,2 , Maksudur R. Khan1, Chin Kui
Cheng1,2*
1Faculty of Chemical & Natural Resources
Engineering
2Centre of Excellence for Advanced Research in Fluid Flow (CARIFF)
Universiti Malaysia Pahang, Lebuhraya
Tun Razak, 26300 Gambang Kuantan, Malaysia
*Corresponding author: chinkui@ump.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
In
this study the synthesis, characterization and catalytic performance of CeO2
(Ceria) supported Co catalyst was investigated.
First, the ceria was synthesized by direct thermal decomposition of
Ce(NO3)3.6H2O and subsequently impregnated
with 20 wt.% Co using aqueous solution of
Co(NO3)2.6H2O as a precursor. The synthesized catalyst was characterized using TGA, N2-adsorption-desorption,
X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscope
(FESEM-EDX), and Fourier Transformation Infrared (FTIR). The catalytic property
of the ceria-supported cobalt catalyst was tested in methane dry reforming
using a stainless steel fixed bed reactor. The dry reforming reaction was
performed at the temperature range of 923-1023 K under a controlled atmospheric pressure and
constant gas hourly space velocity (GHSV) of 30000 h-1. The effects
of reactant (CH4 and CO2) feed ratio was investigated on
reactants conversion, product yields, and
selectivity. The ceria-supported cobalt catalyst recorded highest catalytic
activity at a CH4: CO2
ratio of 0.9 and temperature of 1023 K. The highest values of 79.5% and 87.6%
were recorded for the CH4 and CO2 conversions
respectively. Furthermore, highest yields of 41.98% and 39.76%, as well as
selectivity of 19.56% and 20.72%, were obtained for H2 and CO
respectively. Syngas ratio of 0.90 was obtained from the dry reforming of methane, making it suitable as feedstock for
Fischer-Tropsch synthesis (FTS).
Keywords: ceria, cobalt, Fischer-Trosch synthesis,
methane dry reforming, syngas
Abstrak
Dalam kajian
ini, sintesis, pencirian berserta prestasi tindakbalas pemangkin Co/CeO2
telah dijalankan. Terdahulu, ceria disintesis daripada penguraian terma secara
langsung ke atas Ce(NO3)3.6H2O, diikuti oleh
formulasi dengan 20% logam Co menggunakan larutan akueus Co(NO3)2.6H2O
sebagai pelopor. Mangkin yang diperolehi dicirikan dengan menggunakan kaedah
TGA, N2-penjerapan penyaherapan, pembelauan sinar X (XRD), Mikroskop
Pengimbas Elektron Pancaran Medan – Sinar-X Serakan Tenagan (FESEM-EDX) dan Inframerah
Tranformasi Fourier (FTIR). Prestasi pemangkin Co/CeO2 telah diuji
untuk tindakbalas penghasilan metana kontang di dalam reaktor keluli tahan
karat. Tindakbalas kimia tersebut telah dijalankan pada suhu berjulat daripada
923-1023 K, tekanan 1 atm serta GHSV bersamaan 30000 h-1. Kesan
nisbah reaktan (CH4 and CO2) terhadap penukaran reaktan serta hasil
dan pemilihan produk telah disiasat. Mangkin Co/CeO2 mencatatkan
aktiviti pemangkin paling tinggi pada nisbah CH4/CO2 bersamaan 0.9 dan suhu 1023 K. Penukaran CH4 and CO2 mencatatkan nilai tertinggi bersamaan
79.5% dan 87.6%. Tambahan pula, hasil tertinggi bersamaan 37.6% dan 40%
berserta sifat pemilihan bersamaan 19.56% dan 20.72% untuk H2 dan CO
telah direkodkan. Nisbah gas sintesis bersamaan 0.9 telah diperolehi daripada
penghasilan semula metana kontang bersesuaian untuk tindakbalas sintesis Fischer-Trosch.
Kata
kunci: ceria, kobalt, sintesis Fischer-Tropsch, penghasilan
semula metana, gas sintesis
References
1.
Guo, S., Shao, L., Chen, H., Li, Z.,
Liu, J. B., Xu, F. X., Li, J. S., Han, M. Y., Meng, J., Chen, Z. M. and Li, S. C.
(2007). Inventory and input–output
analysis of CO2 emissions by fossil fuel consumption in Beijing. Ecological Informatics, 12: 93 – 100.
2.
Shearer, C., Bistline, J., Inman, M. and Davis, S. J. (2014).
The effect of natural gas supply on US renewable energy and CO2
emissions. Enviromental Research Letters,
9(9): 1 - 12.
3.
Clarke, L., Kyle, P., Wise, M., Calvin, K.,
Edmonds, J., Kim, S., Placet, M. and Smith, S. (2008). CO2 Emissions mitigation and technological advance : An
updated analysis of advanced technology scenarios PNNL Report Pacific Northwest National Laboratory, Richmond.
4.
Ang, C. T., Morad, N.,
Ismail, M. T. and Ismail, N. (2013). Projection of carbon dioxide
emissions by energy consumption and transportation in Malaysia: A time series
approach. Journal of Energy Technologies and
Policy, 3: 1 - 10.
5.
Korre A, Nie Z. and Durucan S. (2010). Life cycle modelling of fossil fuel power
generation with post-combustion CO2 capture. International Journal of Greenhouse Gas Control , 4: 289 – 300.
6.
Samimi, A. and Zarinabadi S. (2012). Reduction of greenhouse
gases emission and effect on environment. Journal
of American Science, 8: 1011 - 1015.
7.
Mathiesen, B. V., Lund,
H. and Karlsson K.. (2011). 100% Renewable energy systems, climate mitigation
and economic growth. Applied Energy, 88:
488 – 501.
8.
Ross, J. R. H. (2015). Natural gas reforming and CO2
mitigation. Catalysis Today, 100: 151
–158.
9.
Braga, T. P., Santos, R. C., Sales, B. M., da Silva, B. R., Pinheiro,
A. N., Leite, E. R. and Valentini A. (2014). CO2 mitigation by
carbon nanotube formation during dry reforming of methane analyzed by factorial
design combined with response surface methodology. Chinese Journal of Catalysis,
35: 514 –523.
10.
Aasberg-Petersen, K., Dybkjær, I., Ovesen, C. V., Schjødt, N.
C., Sehested, J. and Thomsen, S. G. (2011). Natural gas to synthesis gas - catalysts
and catalytic processes. Journal of Natural
Gas Science and Engineering, 3: 423 – 459.
11.
Verykios, X. E. (2003). Catalytic dry reforming of natural
gas for the production of chemicals and hydrogen. International Journal of Hydrogen Energy, 28: 1045 – 1063.
12.
Sharifi, M., Haghighi, M., Rahmani, F. and Karimipour, S. (2014).
Syngas production via dry reforming of CH4 over Co- and Cu-promoted
Ni/Al2O3–ZrO2 nanocatalysts synthesized via
sequential impregnation and sol–gel methods.
Journal of Natural Gas Science and Engineering,21: 993 – 1004.
13.
Ba, K, Oszk, A., Kecsk, T. and Erd A. (2014). Dry reforming of CH4 on Rh doped Co
/Al2O3 catalysts Catalysis
Today, 228: 123 - 130.
14.
Ayodele, B. V., Khan, M. R, Lam, S. S. and Cheng, C. K.
(2016). Production of CO-rich hydrogen from methane dry reforming over
lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. International Journal of Hydrogen Energy, 41: 4603 - 4615.
15.
Khodakov, A. Y, Chu, W. and Fongarland, P. (2007). Advances in
the development of novel cobalt Fischer − Tropsch Catalysts for Synthesis of
Long-Chain Hydrocarbons and Clean Fuels. Chemical
Reviews, 107(5):
1692 - 1744.
16.
Yao, Y., Liu, X., Hildebrandt, D. and Glasser D. (2011). Fischer-Tropsch
synthesis using H2/CO/CO2 syngas mixtures over an iron
catalyst. Industrial Engineering Chemical
Research, 50: 11002 –11012.
17.
Lee, J. H., You, Y. W., Ahn, H. C., Hong, J.
S., Kim, S. B., Chang, T. S. and Suh, J. K. (2014). The deactivation study of Co–Ru–Zr catalyst depending on supports in the
dry reforming of carbon dioxide. Journal
of Industrial and Engineering Chemistry, 20: 284 – 289.
18.
Ruckenstein, E. and Wang, H. Y. (2002). Carbon deposition and
catalytic deactivation during CO2 reforming of CH4 over
Co/γ-Al2O3 catalysts. Journal
of Catalysis, 205: 289 – 293.
19.
Zhang, J., Wang, H. and Dalai
A. (2007). Development of stable bimetallic catalysts for carbon dioxide
reforming of methane. Journal of Catalysis,
249: 300 – 310.
20.
Corthals, S., Witvrouwen, T., Jacobs, P. and Sels B. (2011).
Development of dry reforming catalysts at elevated pressure: D-optimal vs. full
factorial design. Catalysis Today, 159:
12 – 24.
21.
Li, D., Nakagawa, Y. and Tomishige K. (2011). Methane
reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A General, 408: 1 – 24.
22.
Özkara-Aydınoğlu, Ş. and Aksoylu, A. E. (2010). CO2
reforming of methane over Pt–Ni/Al2O3 catalysts: Effects
of catalyst composition, and water and oxygen addition to the feed. International Journal of Hydrogen Energy,
36: 2950 –2959.
23.
Wisniewski, M., Boréave, A. and Gélin P. (2005). Catalytic CO2
reforming of methane over Ir/Ce0.9Gd0.1O2−x. Catal Communications, 6: 596 – 600.
24.
Kim, S., Qadir, K., Jin, S., Reddy, A. S., Seo,
B., Mun, B. S., Joo, S. H. and Park, J. Y. (2012). Trend of
catalytic activity of CO oxidation on Rh and Ru nanoparticles: Role of surface
oxide. Catalysis Today, 185:131 – 137.
25.
Budiman, A.W., Song, S-H., Chang, T-S., Shin, C-H. and Choi
M-J. (2012). Dry reforming of methane over cobalt catalysts: A literature
review of catalyst development. Catal
Surveys from Asia, 16: 183 –197.
26.
Hadian, N., Rezaei, M., Mosayebi, Z. and Meshkani, F. (2012).
CO2 reforming of methane over nickel catalysts supported on
nanocrystalline MgAl2O4 with high surface area. Journal of Natural Gas Chemistry, 21: 200
– 206.
27.
Sehested, J. (2005). Four challenges for nickel
steam-reforming catalysts. Catalysis
Today, 111: 103 –110.
28.
Oliveira, H., Franceschinib, D. and Passos F. (2014). Cobalt catalyst
characterization for methane decomposition and carbon nanotube growth. Journal of Brazilian Chemical Society, 25:
2339 – 2349.
29.
Frontera, P, Macario, A., Aloise, A., Antonucci, P. L., Giordano, G. and Nagy,
J. B. (2013). Effect of support surface on methane dry-reforming catalyst
preparation. Catalysis Today, 218: 18
– 29.
30.
Shi, L., Yang, G., Tao, K., Yoneyama, Y., Tan, Y. and Tsubaki
N. (2013). An introduction of CO2 conversion by dry reforming with
methane and new route of low-temperature methanol synthesis. Account of Chemical Research, 46: 1838 –
1847.
31.
Zhang, B., Cai, W., Li, Y., Xu, Y. and Shen W. (2008). Hydrogen
production by steam reforming of ethanol over an Ir/CeO2 catalyst:
Reaction mechanism and stability of the catalyst. International Journal of Hydrogen Energy, 33: 4377 – 4386.
32.
Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y. and Shen, W.
(2006). Steam reforming of bio-ethanol for the production of hydrogen over
ceria-supported Co, Ir and Ni catalysts. Catalysis
Communications, 7: 367 – 372.
33.
da Silva, A. M., de Souza, K. R., Mattos, L. V., Jacobs, G.,
Davis, B. H. and Noronha, F. B. (2011).
The effect of support reducibility on the stability of Co/CeO2 for
the oxidative steam reforming of ethanol. Catalysis
Today, 164: 234 – 239.
34.
Luisetto, I, Tuti, S. and Di Bartolomeo E. (2012). Co and Ni
supported on CeO2 as selective bimetallic catalyst for dry reforming
of methane. International Journal of Hydrogen
Energy, 37: 15992 – 15999.
35.
Abasaeed, A. E, Al-fatesh, A. S, Naeem, M. A, Ibrahim, A. A.
and Fakeeha, A. H. (2015). Catalytic performance of CeO2 and ZrO2
supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy,
6818 – 6826.
36.
Ayodele, B. V., Hossain, M. A., Chong, S. L, Soh, J. C,
Abdullah, S., Khan, M. R. and Cheng, C. K. (2016). Non-isothermal kinetics and
mechanistic study of thermal decomposition of light rare earth metal nitrate
hydrates using thermogravimetric analysis. Journal
of Thermal Analysis and Calorimetry, 125(1):
423 - 435.
37.
Lee, S. S, Zhu, H., Contreras, E. Q, Prakash, A., Puppala, H.
L. and Colvin, V. L. (2012). High temperature decomposition of cerium
precursors to form ceria nanocrystal libraries for biological applications. Chemistry Materials, 24: 424 – 432.
38.
Foo, S. Y. (2012). Oxidative dry reforming of methane over
alumina-supported Co-Ni catalyst systems. Doctor of Philosophy Thesis,
University of New South Wale, Australia.
39.
Wang, H, Liu, Y., Wang, L. and Qin, Y. N. (2008). Study on the carbon deposition in steam
reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal, 145: 25 – 31.
40.
Zeng, S., Fu, Xiaojuan Z., Tiezhuang W. and Xiaoman S. H.
(2014). Influence of Fe doping on structure and water oxidation activity of nanocast
Co3O4. Fuel Process
Technology, 114: 4 – 10.
41.
Zeng, S., Zhang, X. Fu, X. Zhang, L. Su, H. and Pan, H. (2012).
Co/CexZr1−xO2 solid-solution catalysts with
cubic fluorite structure for carbon dioxide reforming of methane. Applied Catalysis B, Environmental, 136:
308 – 316.
42.
Sajjadi, S. M, Haghighi, M. and Rahmani, F. (2014). Dry
reforming of greenhouse gases CH4/CO2 over MgO-promoted
Ni-Co/Al2O3-ZrO2 nanocatalyst: Effect of MgO
addition via sol-gel method on catalytic properties and hydrogen yield. Journal of Sol-Gel Science Technology, 70(1):
111 –124.
43.
San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M. J. and Román-Martínez,
M. C. (2009). Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of
methane. Applied Catalysis A General,
371: 54 – 59.
44.
Zeng, S., Zhang, L., Zhang, X., Wang, Y., Pan, H. and Su, H. (2012).
Modification effect of natural mixed rare earths on Co/γ-Al2O3
catalysts for CH4/CO2 reforming to synthesis gas. International Journal of Hydrogen Energy, 37:
9994 – 10001.