Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 37 - 45
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-05
PRELIMINARY STUDY ON PRODUCTION OF
MONOACYLGLYCEROL AND DIACYLGLYCEROL OF VIRGIN COCONUT OIL VIA ENZYMATIC
GLYCEROLYSIS USING LIPASE Candida
antarctica (Novozyme 435)
(Kajian Awal Penghasilan Monoasilgliserol dan
Diasilgliserol Minyak Kelapa Dara Melalui Gliserolisis Berenzim Menggunakan
Lipase Candida antarctica (Novozyme
435))
Darfizzi
Derawi1*, Nurin Afiqah Zairul Azman1, Mohd Fadlly Jumadi2
1 School of Chemical Sciences and Food
Technology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2 Sime
Darby Research Sdn. Bhd., 42690 Carey Island, Selangor, Malaysia
*Corresponding author: darfizzi@ukm.edu.my
Received: 29
January 2016; Accepted: 22 November 2016
Abstract
Virgin coconut oil (VCO) consists mainly of
saturated medium chain fatty acids which are 48.8% lauric acid (C12:0) and 20.0% myristic acid (C14:0). Both medium chain
fatty acids are essential in increasing metabolism and possess antibacterial
properties. These fatty acids of VCO are in the form of triacylglycerols
(TAGs). Hence, VCO has to be converted into a simpler form such as mono- and
diacylglycerols (MAGs and DAGs) in order to increase its antibacterial
functionality in metabolism. In this paper, VCO was chemically modified via
enzymatic glycerolysis reaction conducted at a molar ratio of 1:1
(VCO:glycerol) and catalysed by lipase enzyme, Candida antarctica (Novozyme 435). The reaction was carried out in
an incubator shaker at 50 °C and 250 rpm of reaction speed. Reaction parameters
were reaction time (24 and 48 hours) and enzyme concentrations (3, 5 and 10%).
The product comprises of 3.3% MAG, 3.6% DAG and 93.1% TAG has been obtained by preliminary
optimum reaction condition at temperature of 50 °C with 5 %wt of enzyme
concentration at 24 hours of reaction time. Chemical analysis techniques used
were thin layer chromatography (TLC), fourier transformation infrared (FT-IR) spectroscopy
and gas chromatography (GC). Products are potentially to be used as food
emulsifier, pharmaceutical binders, antibacterial products as well as food
additives.
Keywords: virgin
coconut oil, glycerolysis, lipase enzyme, monoacylglycerol, diacylglycerol
Abstrak
Kandungan utama
minyak kelapa dara (VCO) adalah asid lemak tepu berantai sederhana dengan 48.8%
adalah asid laurik (C12:0) dan 20.0% asid miristik (C14:0). Asid lemak dengan rantaian
sederhana adalah penting dalam meingkatkan kadar metabolisma dan mempunyai
ciri-ciri anti-bakteria. Asid lemak dalam VCO adalah dalam bentuk
triasilgliserol (TAG). Oleh itu, VCO perlu ditukarkan kepada bentuk yang lebih ringkas
seperti mono dan diasilgliserol (MAG dan DAG) untuk meningkatkan fungsi
anti-bakteria dalam metabolisma. Dalam kajian ini, VCO diubahsuai secara kimia melalui
tindak balas gliserolisis berenzim yang dijalankan pada nisbah molar 1:1
(VCO:gliserol) dengan enzim lipase Candida
antarctica (Novozyme 435) sebagai pemangkin. Tindak balas ini telah
dijalankan dalam inkubator bergetar pada suhu 50 °C dengan kelajuan 250 rpm.
Parameter tindak balas yang dilakukan adalah masa tindak balas (24 dan 48 jam)
dan kepekatan enzim (3, 5 dan 10%). Hasil tindak balas terdiri daripada 3.3% MAG,
3.6% DAG dan 93.1% TAG telah diperolehi dengan kondisi tindak balas optimum
awal pada suhu tindak balas 50 oC dengan kepekatan enzim 5 %wt pada
24 jam tindak balas. Teknik analisis kimia yang digunakan adalah kromatografi
lapisan nipis (TLC), spektroskopi transformasi fourier inframerah (FT-IR) dan
kromatografi gas (GC). Produk berpotensi untuk digunakan sebagai pengemulsi
makanan, pengikat dalam farmaseutikal, produk anti-bakteria dan bahan tambah
dalam makanan.
Kata kunci: minyak kelapa dara, gliserolisis, enzim
lipase, monoasilgliserol, diasilgliserol
References
1.
Chen, B., McClements, D. J. and Decker, E. A.
(2014). Impact of diacylglycerol and monoacylglycerol on the physical
andchemical properties of stripped soybean oil. Food Chemistry, 142: 365 – 372.
2.
Al-Darmaki, N., Lu, T., Al-Duri, B., Harris,
J. B., Favre, T. L. F., Bhaggan, K. and Santos, R. C. D. (2011). Solubility measurements
and analysis of binary, ternary and quaternary systems of palm olein, squalene
and oleic acid in supercritical carbon dioxide. Separation and Purification Technology, 83: 189 – 195.
3.
Pyo, Y. G., Hong, S. I., Kim, Y., Kim, B. H.
and Kim, I. H. (2012). Synthesis of monoacylglycerol containing pinolenic acid
via stepwise esterification using a cold active lipase. Biotechnology Progress, 28(5): 1218 – 1224.
4.
Kielczynski, P., Szalewski, M., Balcerzak, A.,
Malanowski, A., Siegoczynski, R. M. and Ptasznik, S. (2012). Investigation of
high-pressure phase transitions in DAG (diacylglycerol) oil using the Bleustein–Gulyaev
ultrasonic wave method. Food Research International,
49: 60 – 64.
5.
Reyes, G., Yasunaga, K., Rothenstein, E.,
Karmally, W., Ramakrishnan, R. and Holleran, S. (2008). Effects of a 1,3-diacylglycerol
oil-enriched diet on postprandial lipemia in people with insulin resistance. Journal of Lipid Research, 49: 670 – 678.
6.
Sonntag (1982). Glycerolysis of fats and
methyl esters – status. Journal of the
American Oil Chemists’ Society, 59(10): 795 – 802.
7.
Bornscheuer, U. T. (1995). Lipase-catalyzed Syntheses
of Monoacylglycerols. Enzyme and Microbial
Technology, 17: 578 – 586.
8.
Ferreira-Dias, S., Correia, A. C., Baptista,
F. O. and Fonseca, M. M. R. (2001). Contribution of response surface design to
the development of glycerolysis systems catalyzed by commercial immobilized
lipases. Journal of Molecular Catalysis
B: Enzymatic, 11: 699 – 711.
9.
Zhu, Q., Li, T., Wang, Y., Yang, B. and Ma, Y.
(2011). A two-stage enzymatic process for synthesis of extremely pure high
oleic glycerol monooleate. Enzyme and Microbial
Technology, 48: 143 – 147.
10.
Gunstone, F. D. (1999). Enzymes as
biocatalysts in the modification of natural lipids. Journal of the Science of Food and Agriculture, 79(12): 1535 – 1549.
11.
Brandt, A. M., Li, X. G., Nymalm-Rejstrom, Y.,
Airenne, T., Kanerva, L. T. and Salminen, T. A (2009). The X-ray Structure of Candida antarctica Lipase A. RCSB Protein Data Bank (PDB).
12.
Mansor, T. S. T., Che, Man, Y. B., Shuhaimi,
M., Abdul, Afiq, M. J. and Ku, Nurul, F. K. M. (2012). Physicochemical properties
of virgin coconut oil extracted from different processing methods. International Food Research, 19(3): 837
– 845.
13.
Marten, B., Pfeuffer, M. and Schrezenmeir, J.
(2006). Medium-chain triglyceride (review). International
Dairy Journal, 16: 1374 – 1382.
14.
International Union of Pure and Applied
Chemistry (IUPAC) (1979). Standard Methods for the Analysis of Oils, Fats and
Derivatives. 6th edition. Oxford: Pergamon
Press.
15.
Nandi, S., Gangopadhyay, S. and Ghosh, S.
(2005). Production of medium chain glycerides from coconut and palm kernel
fatty acid distillates by lipasecatalyzed reaction. Enzyme and Microbial Technology, 36: 725 – 728.
16.
PORIM (1995) PORIM test method. Malaysia:
Palm Oil Research Institute of Malaysia.
17.
AOAC Official Methods Of Analysis (1997). Association of Official Analytical Chemists.
17th edition. Washington DC.
18.
Pinyahpong, P, Sriburi, P and Phutrakul, S.
(2012). Synthesis of monoacylglycerol from glycerolysis of crude glycerol with
coconut oil catalyzed by Carica papaya
lipase. International Journal of
Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6
(10): 926 – 931.
19.
Asian and Pacific Coconut Community (2003).
Internet: standard for virgin coconut oil. Downloaded from http://www.apccsec.org/standards.htm/
[Date access 15/1/2015].
20.
Littlewood, A. B. (1970). Gas chromatography:
Principles, techniques and applications. New York: Academic Press.