Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 37 - 45

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-05

 

 

 

PRELIMINARY STUDY ON PRODUCTION OF MONOACYLGLYCEROL AND DIACYLGLYCEROL OF VIRGIN COCONUT OIL VIA ENZYMATIC GLYCEROLYSIS USING LIPASE Candida antarctica (Novozyme 435)

 

(Kajian Awal Penghasilan Monoasilgliserol dan Diasilgliserol Minyak Kelapa Dara Melalui Gliserolisis Berenzim Menggunakan Lipase Candida antarctica (Novozyme 435))

 

Darfizzi Derawi1*, Nurin Afiqah Zairul Azman1, Mohd Fadlly Jumadi2

 

1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2 Sime Darby Research Sdn. Bhd., 42690 Carey Island, Selangor, Malaysia

 

*Corresponding author: darfizzi@ukm.edu.my

 

 

Received: 29 January 2016; Accepted: 22 November 2016

 

 

Abstract

Virgin coconut oil (VCO) consists mainly of saturated medium chain fatty acids which are 48.8% lauric acid (C12:0) and  20.0% myristic acid (C14:0). Both medium chain fatty acids are essential in increasing metabolism and possess antibacterial properties. These fatty acids of VCO are in the form of triacylglycerols (TAGs). Hence, VCO has to be converted into a simpler form such as mono- and diacylglycerols (MAGs and DAGs) in order to increase its antibacterial functionality in metabolism. In this paper, VCO was chemically modified via enzymatic glycerolysis reaction conducted at a molar ratio of 1:1 (VCO:glycerol) and catalysed by lipase enzyme, Candida antarctica (Novozyme 435). The reaction was carried out in an incubator shaker at 50 °C and 250 rpm of reaction speed. Reaction parameters were reaction time (24 and 48 hours) and enzyme concentrations (3, 5 and 10%). The product comprises of 3.3% MAG, 3.6% DAG and 93.1% TAG has been obtained by preliminary optimum reaction condition at temperature of 50 °C with 5 %wt of enzyme concentration at 24 hours of reaction time. Chemical analysis techniques used were thin layer chromatography (TLC), fourier transformation infrared (FT-IR) spectroscopy and gas chromatography (GC). Products are potentially to be used as food emulsifier, pharmaceutical binders, antibacterial products as well as food additives.

 

Keywords:  virgin coconut oil, glycerolysis, lipase enzyme, monoacylglycerol, diacylglycerol

 

Abstrak

Kandungan utama minyak kelapa dara (VCO) adalah asid lemak tepu berantai sederhana dengan 48.8% adalah asid laurik (C12:0) dan 20.0% asid miristik (C14:0). Asid lemak dengan rantaian sederhana adalah penting dalam meingkatkan kadar metabolisma dan mempunyai ciri-ciri anti-bakteria. Asid lemak dalam VCO adalah dalam bentuk triasilgliserol (TAG). Oleh itu, VCO perlu ditukarkan kepada bentuk yang lebih ringkas seperti mono dan diasilgliserol (MAG dan DAG) untuk meningkatkan fungsi anti-bakteria dalam metabolisma. Dalam kajian ini, VCO diubahsuai secara kimia melalui tindak balas gliserolisis berenzim yang dijalankan pada nisbah molar 1:1 (VCO:gliserol) dengan enzim lipase Candida antarctica (Novozyme 435) sebagai pemangkin. Tindak balas ini telah dijalankan dalam inkubator bergetar pada suhu 50 °C dengan kelajuan 250 rpm. Parameter tindak balas yang dilakukan adalah masa tindak balas (24 dan 48 jam) dan kepekatan enzim (3, 5 dan 10%). Hasil tindak balas terdiri daripada 3.3% MAG, 3.6% DAG dan 93.1% TAG telah diperolehi dengan kondisi tindak balas optimum awal pada suhu tindak balas 50 oC dengan kepekatan enzim 5 %wt pada 24 jam tindak balas. Teknik analisis kimia yang digunakan adalah kromatografi lapisan nipis (TLC), spektroskopi transformasi fourier inframerah (FT-IR) dan kromatografi gas (GC). Produk berpotensi untuk digunakan sebagai pengemulsi makanan, pengikat dalam farmaseutikal, produk anti-bakteria dan bahan tambah dalam makanan.

 

Kata kunci:  minyak kelapa dara, gliserolisis, enzim lipase, monoasilgliserol, diasilgliserol

 

References

1.       Chen, B., McClements, D. J. and Decker, E. A. (2014). Impact of diacylglycerol and monoacylglycerol on the physical andchemical properties of stripped soybean oil. Food Chemistry, 142: 365 – 372.

2.       Al-Darmaki, N., Lu, T., Al-Duri, B., Harris, J. B., Favre, T. L. F., Bhaggan, K. and Santos, R. C. D. (2011). Solubility measurements and analysis of binary, ternary and quaternary systems of palm olein, squalene and oleic acid in supercritical carbon dioxide. Separation and Purification Technology, 83: 189 – 195.

3.       Pyo, Y. G., Hong, S. I., Kim, Y., Kim, B. H. and Kim, I. H. (2012). Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase. Biotechnology Progress, 28(5): 1218 – 1224.

4.       Kielczynski, P., Szalewski, M., Balcerzak, A., Malanowski, A., Siegoczynski, R. M. and Ptasznik, S. (2012). Investigation of high-pressure phase transitions in DAG (diacylglycerol) oil using the Bleustein–Gulyaev ultrasonic wave method. Food Research International,  49: 60 – 64.

5.       Reyes, G., Yasunaga, K., Rothenstein, E., Karmally, W., Ramakrishnan, R. and Holleran, S. (2008). Effects of a 1,3-diacylglycerol oil-enriched diet on postprandial lipemia in people with insulin resistance. Journal of Lipid Research, 49: 670 – 678.

6.       Sonntag (1982). Glycerolysis of fats and methyl esters – status. Journal of the American Oil Chemists’ Society, 59(10): 795 – 802.

7.       Bornscheuer, U. T. (1995). Lipase-catalyzed Syntheses of Monoacylglycerols. Enzyme and Microbial Technology, 17: 578 – 586.

8.       Ferreira-Dias, S., Correia, A. C., Baptista, F. O. and Fonseca, M. M. R. (2001). Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. Journal of Molecular Catalysis B: Enzymatic, 11: 699 – 711.

9.       Zhu, Q., Li, T., Wang, Y., Yang, B. and Ma, Y. (2011). A two-stage enzymatic process for synthesis of extremely pure high oleic glycerol monooleate. Enzyme and Microbial Technology, 48: 143 – 147.

10.    Gunstone, F. D. (1999). Enzymes as biocatalysts in the modification of natural lipids. Journal of the Science of Food and Agriculture, 79(12): 1535 – 1549.

11.    Brandt, A. M., Li, X. G., Nymalm-Rejstrom, Y., Airenne, T., Kanerva, L. T. and Salminen, T. A (2009). The X-ray Structure of Candida antarctica Lipase A. RCSB Protein Data Bank (PDB).

12.    Mansor, T. S. T., Che, Man, Y. B., Shuhaimi, M., Abdul, Afiq, M. J. and Ku, Nurul, F. K. M. (2012). Physicochemical properties of virgin coconut oil extracted from different processing methods. International Food Research, 19(3): 837 – 845.

13.    Marten, B., Pfeuffer, M. and Schrezenmeir, J. (2006). Medium-chain triglyceride (review). International Dairy Journal, 16: 1374 – 1382.

14.    International Union of Pure and Applied Chemistry (IUPAC) (1979). Standard Methods for the Analysis of Oils, Fats and Derivatives. 6th edition. Oxford: Pergamon Press.

15.    Nandi, S., Gangopadhyay, S. and Ghosh, S. (2005). Production of medium chain glycerides from coconut and palm kernel fatty acid distillates by lipasecatalyzed reaction. Enzyme and Microbial Technology, 36: 725 – 728.

16.    PORIM (1995) PORIM test method. Malaysia: Palm Oil Research Institute of Malaysia.

17.    AOAC Official Methods Of Analysis (1997).  Association of Official Analytical Chemists. 17th edition. Washington DC.

18.    Pinyahpong, P, Sriburi, P and Phutrakul, S. (2012). Synthesis of monoacylglycerol from glycerolysis of crude glycerol with coconut oil catalyzed by Carica papaya lipase. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6 (10): 926 – 931.

19.    Asian and Pacific Coconut Community (2003). Internet: standard for virgin coconut oil. Downloaded from http://www.apccsec.org/standards.htm/ [Date access 15/1/2015].

20.    Littlewood, A. B. (1970). Gas chromatography: Principles, techniques and applications. New York: Academic Press.

 




Previous                    Content                    Next