Malaysian Journal of Analytical Sciences Vol 21 No 1
(2017): 60 - 71
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-08
SYNTHESIS AND STRUCTURAL
CHARACTERIZATION OF
N-BROMOBENZOYL-N'-(1,10-PHENANTHROLIN-5-YL)THIOUREA
DERIVATIVES
(Sintesis dan Penentuan Struktur Ligan Terbitan N-Bromobenzoil-N'-(1,10-Fenantrolin-5-il) tiourea)
Rosidah Shardin1, Siew San Tan1,
Mohammad B. Kassim1,2*
1School of Chemical Sciences and Food Technology,
Faculty of Science and Technology
2Fuel Cell Institute
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: mb_kassim@ukm.edu.my
Received: 28
September 2016; Accepted: 8 December 2016
Abstract
Derivatives
of N-bromobenzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea were
successfully synthesized from the reaction of 1,10-phenanthroline with x-bromobenzoylisothiocyanate
(x = ortho, meta and para) to give phen-o-BrBT, phen-m-BrBT and phen-p-BrBT,
respectively. The molecular structures of the derivatives compounds were elucidated
based on the crystal structure of N-bromobenzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea,
CHNS elemental analysis, mass spectrometry, spectroscopic data (infrared,
ultraviolet-visible, nuclear magnetic resonance and luminescence) and cyclic
voltammetry.The mass spectrum show similar m/z values at 460.9 and 260.0, which represent the molecular ions for [(phen-x-BrBT)-Na]+ and [BrBT]+,
respectively. The presence of a v(NH) (3389-3599 cm-1) and the
disappearance of ν(NH2) bands from 1,10-phenanthroline-5-amine indicate the formation of the N-bromobenzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea. Attachment of a Br atom to the benzoyl moiety reduced the
stretching frequency of C=O
group by >20 cm-1 compared with phen-BT ligand. The compounds exhibit two π→π*
bands at 231 and 269-270 nm for the phenanthroline and benzoyl moieties,
respectively. The resonance for N-H proton appeared at δ = 11.53-12.49 ppm. In addition, 13C resonance signals for
C=S and C=O groups were recorded at around 182 and 167.39-169.08
ppm, respectively. The synthesis and effect of a Br substitution on the
structural and luminescence properties of N-bromobenzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea
derivatives are presented and discussed in this study.
Keywords:
benzoylthiourea, 1,10-phenanthroline,
thiocyanate, infrared, luminescence
Abstrak
Terbitan N-bromobenzoil-N'-(1,10-fenantrolin-5-il)tiourea
telah disintesis melalui tindak balas di antara 1,10-fenantrolina dengan x-bromobenzoilisotiosianat (x = orto, meta and para)
masing-masing menghasilkan sebatian phen-o-BrBT,
phen-m-BrBT dan phen-p-BrBT. Struktur sebatian ditentukan
berdasarkan struktur kristal N-benzoil-N'-(1,10-fenantrolin-5-il)tiourea,
analisis unsur CHNS, spektrometri jisim, data spektroskopi (inframerah,
ultralembayung-boleh nampak, pendarcahaya dan resonans magnetik nuklear) dan
voltammetri kitaran. Spektrum jisim bagi ketiga-tiga sebatian ini menunjukkan
nilai m/z yang sama pada 460.9 dan 260.0 masing-masing mewakili ion
molekul [(phen-x-BrBT)-Na]+ dan
[BrBT]+. Kemunculan isyarat v(NH) pada
3389-3599 cm-1 dan kehilangan frekuensi regangan ν(NH2)
bagi sebatian 1,10-fenantrolin-5-amina
menunjukkan pembentukan molekul N-bromobenzoil-N'-(1,10-fenantrolin-5-il)tiourea. Kehadiran atom bromo pada gelang benzoil telah merendahkan frekuensi
regangan v(CO) sebanyak >20 cm-1
berbanding N-bromobenzoil-N'-(1,10-fenantrolin-5-il)tiourea. Spektrum elektronik
sebatian memapar dua jalur serapan bagi peralihan π→π* pada 231 dan 269-270
nm masing-masing berpunca daripada moieti fenantrolina dan benzoil. Isyarat resonan 1H (N-H) hadir pada δ = 11.53-12.49 ppm manakala,
isyarat 13C bagi kumpulan berfungsi utama C=S dan C=O telah dikenal pasti masing-masing
pada 182 dan 167.39-169.08 ppm. Sintesis dan kesan kehadiran Br pada
posisi orto, meta dan para terhadap
struktur serta sifat pendarcahaya sebatian dilapor dan dibincang di dalam
kajian ini.
Kata
kunci: benzoilthiourea,
1,10-fenantrolina, tiosianat, inframerah, pendarcahaya
References
1.
Sammes, P. G and
Yahioglu, G. (1994). 1,10-phenanthroline: a versatile ligand. Journal of Chemical Society Reviews, 23:
327 – 334.
2.
Shen. Y. and
Sullivan, B. P. (1995). A versatile preparative route to
5-substituted-1,10-phenanthroline ligands via 1,10-phenanthroline 5,6-epoxide. Inorganic Chemistry, 34: 6235 – 6236.
3.
Ramı́rez-Silva,
M. T., Gómez-Hernández, M., de Lourdes Pacheco-Hernández, M., Rojas-Hernández,
A. and Galicia, L. (2004). Spectroscopy study of 5-amino-1, 10-phenanthroline. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 60(4): 781 – 789.
4.
Kodomari, M.,
Suzuki, M., Tanigawa, K. and Aoyama, T. (2005). A convenient and efficient
method for the synthesis of mono- and N,N-disubstituted thioureas. Tetrahedron Letters, 46: 5841 – 5843.
5.
Alkherraz, A. M,
Lusta, Z. I. and Zubi, A. E. (2014). Synthesis and use of thiourea
derivative(1-phenyl-3-benzoyl-2-thiourea) for extraction of cadmium ion. International Journal of Chemical, Materials
Science and Engineering, 8(2): 15 – 17.
6.
Ren, J. S.,
Diprose, J., Warren, J., Esnouf, R. M., Bird, L. E., Ikemizu, S., Slater, M.,
Milton, J., Balzarini, J., Stuart, D. L., and Stammers, D. K. (2000).
Phenylethylthiazolythiourea (PETT) non-nucleoside inhibitors of HIV-1 and HIV-2
reverse transcriptases. Structural and biochemical analyses. Journal of Biological Chemistry, 275(8):
5633 – 5639.
7.
Katritzky, A. R.,
Li, J. and Gordeev, M. F. (1993). New synthetic routes to furans and
dihydrofurans from 1-propargylbenzotriazole. Journal of Organic Chemistry, 58(11): 3038 – 3041.
8.
Koch, K. R.
(2001). New chemistry with old ligands: N-alkyl-
and N,N-dialkyl-N'-acyl(aroyl)thioureas
in co-ordination, analytical and process chemistry of the platinum group
metals. Coordination Chemistry Reviews,
216: 473 – 488.
9.
Sun, C. W. and
Zhang, X. D. (2007). Synthesis and crystal structure of S-(+)-N'-tertbutylaminocarbonyl-N-[3-methyl-2-(4-chlorophenyl)butyryl]thiourea.
Chinese Journal of Structural Chemistry, 26(2):
153 – 156.
10.
Saeed. A. Khera,
A. Abbas. N. Latif, M. Sajid, I. and Florke, U. (2010). Synthesis,
characterization, crystal structures, and antibacterial activity of some new
1-(3,4,5-trimethoxybenzoyl)-3-arylthioureas. Turkish Journal of Chemistry, 34(3): 335 – 345.
11.
Saeed, S.,
Rashid, N., Ali, M. and Hussain, R. (2010). Synthesis, characterization and
antibacterial activity of nickel(III) and copper(II) complexes of
N-(alkyl(aryl)carbamothioyl)-4-nitrobenzamide. European Journal of Chemistry, 1(3): 200 – 205.
12.
Eweis, M.,
Elkholy, S. S. and Elsabee, M. Z. (2006). Antifungal efficacy of chitosan and
its thiourea derivatives upon the growth of some sugar-beet pathogens. International Journal of Biological
Macromolecules, 38(1): 1 – 8.
13.
Soung, M. G.,
Park, K. Y., Song, J. H. and Sung, N. D. (2008). Herbicidal activity and
molecular similarity of 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea
derivatives. Journal of the Korean
Society for Applied Biological Chemistry, 51(3): 219 – 222.
14.
Das, D. K. and
Fres. J. (1984). N-α-(5-bromopyridyl)-N'-benzoyl
thiourea (BrPBT) as a new chelating agent for the spectrophotometric
determination of rhodium(III). Fresenius Journal of Analytical Chemistry,
318(8): 612.
15.
Shome, S. C.
Mazumdar, M., and Haldar, P. K. (1980). N-Alpha-pyridyl-N'-benzoylthiourea as a chelating agent
for the determination of iridium. Journal of the Indian Chemical Society,
57(2): 139 – 141.
16.
Mat Rashid, F.
L., Lee, Y. H., Daran, J. C. and Kassim, M. B. (2011). N-Benzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea
dichloromethane hemisolvate monohydrate.
Acta Crystallographica, E67:
1397 – 1398.
17.
Al-abbasi, A. A.,
Tan, S. S. and Kassim, M. B. (2010). 1-benzoyl-3-(4-hydroxyphenyl)thiourea. Acta Crystallographica, E66: 3181 – 3190.
18.
Tan, S. S.,
Al-abbasi, A. A., Mohamed Tahir, M. I. and Kassim, M. B. (2014). Synthesis,
structure and spectroscopic properties of cobalt(III) complexes with
1-benzoyl-(3,3-disubstituted)thiourea. Polyhedron,
68: 287 – 294.
19.
Shahroosvand, H.,
Abbasi, P. Notash, B. and Najafi, L. (2013). Separation of functionalized
5,6-disubstituted-1,10-phenanthroline for dye-sensitized solar cell
applications. Journal of Chemistry, 2013:
1 – 8.
20.
Allen, F. H.,
Kennard, O., Waston, D. G., Barmmer, L., Orpen, A. G. and Taylor, R. (1987).
Tables of bond lengths determined by X-ray and neutron diffraction. Part 1.
Bond lengths in organic compounds. Journal
of Chemical Society Perkin Transactions, 2: 1 – 19.