Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 356 - 364
DOI:
https://doi.org/10.17576/mjas-2017-2102-10
MORPHOLOGICAL
PROPERTIES OF POLY(VINYLIDENE FLUORIDE-CO-TETRAFLUOROETHYLENE MEMBRANE): EFFECT
OF SOLVENTS AND POLYMER CONCENTRATIONS
(Sifat–Sifat
Morfologi Membran Kepingan Rata Poli(Vinilidena Fluorida-Ko Tetrafluoridaetilena):
Kesan Pelarut dan Kepekatan Polimer)
Amira Mohd Nasib*,
Irfan Hatim, Nora Jullok, Hameed R. Alamery
School
of Bioprocess Engineering,
Universiti
Malaysia Perlis, 02600 Arau, Perlis, Malaysia
*Corresponding author: amira.m.nasib@gmail.com
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
Poly(vinylidene
fluoride-co-tetrafluoroethylene) (PVDF-co-PTFE) flat sheet membranes were
prepared via phase inversion process by
means of immersion precipitation. The effects on the microstructure of prepared
membranes by using different solvents and the effect of polymer solution
composition (polymer concentration) on the membrane morphologies and the
membrane porosity were studied. Three different solvents were employed, which
were, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and
N,N-dimethylformamide (DMF). Different polymer concentrations were used; 20 wt.%,
25 wt.% and 30 wt.%. Brookfield viscometer was used to measure the viscosity
for each polymer solution before the membrane was casting. The morphological study
for the cross-sectional area of PVDF-co-PTFE membrane was carried out by using
scanning electron microscope (SEM). The membrane porosity was determined by
using the weight difference and density resulted from the immersing of dry
membrane into octanol for 15 seconds. The results showed that the polymer
concentration was a particularly important parameter. At different polymer
concentration, the precipitant plays an important role and finally influence
the prepared membrane microstructure. At higher concentration of PVDF-co-PTFE
polymer, the prepared membrane possessed a sponge-like membrane structures,
whereas at lower concentration, a finger-like structure was obtained. It was also
found that, the membrane porosity decreases with the increasing of polymer
concentration. The effect of different solvent reflected to different
morphologies of the prepared flat sheet membranes. Prepared membrane with more
sponge-like structure indicated a weak dissolution solvent was used. Hence, a
small amount of water needed to induce precipitation and reduced the
precipitation rate.
Keywords: PVDF-co-PTFE polymer, phase inversion, polymer
concentration, membrane morphology
Abstrak
Membran kepingan rata poli (vinilidena fluorida-ko-tetrafluoridaetilena)
(PVDF-ko-PTFE) telah disediakan dengan kaedah fasa penyongsangan menggunakan
fasa pemisah bukan pelarut teraruh (FPBT). Kesan ke atas mikrostruktur membran tersedia
dengan menggunakan pelarut yang berbeza dan kesan komposisi larutan penuangan
(kepekatan polimer) ke atas morfologi membran dan keliangan membran telah
dikaji. Tiga pelarut yang berbeza digunakan ialah N,N-dimetilasetamida (DMAs), N-metil-2-pirolidon
(NMP) dan N,N-dimetilformamida (DMF). Kepekatan polimer yang berbeza akan
digunakan, iaitu pada 20 wt.%, 25 wt.% dan 30 wt.%. Brookfield viskometer
digunakan untuk mengukur kelikatan lasrutan polimer sebelum membran diacukan. Kajian
morfologi bagi kawasan keratan rentas membran PVDF-co-PTFE telah dijalankan
dengan menggunakan mikroskop elektron pengimbas (SEM). Analisis keputusan keliangan
ditentukan dengan perendaman membran
kering di dalam oktanol selama 15 saat. Keputusan menunjukkan bahawa kepekatan
polimer adalah parameter penting. Pada kepekatan polimer yang berbeza, bahan
pemendak memainkan peranan yang penting dan akhirnya mempengaruhi mikrostruktur
membran tersedia. Pada kepekatan polimer PVDF-ko-PTFE yang lebih tinggi,
membran tersedia memiliki struktur membran seperti span, sedangkan pada
kepekatan yang lebih rendah, struktur seperti-jejari telah diperolehi. Ia juga
mendapati bahawa, keliangan membran menurun dengan peningkatan kepekatan
polimer. Penggunaan pelarut yang berbeza terkesan kepada berlainan morfologi membran
kepingan rata yang tersedia. Membran tersedia dengan struktur seperti span
menunjukkan pelarut pelarutan lemah telah digunakan. Oleh itu, jumlah air yang sedikit
diperlukan untuk mendorong mendakan dan mengurangkan kadar mendakan.
Kata kunci: PVDF-ko-PTFE
polimer, fasa pemisah, kepekatan polimer, morfologi membran
References
1. Liu,
F., Hashim, N. A., Liu, Y., Abed, M. M. and Li, K. (2011). Progress in the
production and modification of PVDF membranes. Journal of Membrane Science,
375(1): 1 - 27.
2. Mulder, J. (2012). Basic
principles of membrane technology. Springer Science & Business Media.
3. Guillen, G. R., Pan, Y., Li, M.
and Hoek, E. M. (2011). Preparation and characterization of membranes formed by
nonsolvent induced phase separation: A review. Industrial &
Engineering Chemistry Research, 50(7): 3798 - 3817.
4. Khayet, M. and Matsuura, T.
(2011). Membrane distillation: Principles and applications. Elsevier, Amsterdam.
5. See-Toh, Y. H., Ferreira, F. C.
and Livingston, A. G. (2007). The influence of membrane formation parameters on
the functional performance of organic solvent nanofiltration membranes. Journal
of Membrane Science, 299(1): 236 - 250.
6. Gevers, L. E., Aldea, S., Vankelecom,
I. F. and Jacobs, P. A. (2006). Optimisation of a lab-scale method for
preparation of composite membranes with a filled dense top-layer. Journal
of Membrane Science, 281(1): 741 - 746.
7. Ji, G.-L., Zhu, B.-K., Cui, Z.-Y.,
Zhang, C.-F. and Xu, Y.-Y. (2007). PVDF porous matrix with controlled
microstructure prepared by TIPS process as polymer electrolyte for lithium ion
battery. Polymer, 48(21): 6415 - 6425.
8. Marbelia, L., M. R. Bilad, A.
Piassecka, P.S. Jishna, P.V. Naik & I.F. Vankelecom, (2016). Study of PVDF
asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR):
Influence of phase inversion parameters and filtration performance. Separation
and Purification Technology, 162: 6 - 13.
9. Ahmad, A., Ramli, W., Fernando,
W. and Daud, W. R. W. (2012). Effect of ethanol concentration in water
coagulation bath on pore geometry of PVDF membrane for membrane gas absorption
application in CO2 removal.
Separation and Purification Technology,
88: 11 - 18.
10. Buonomenna, M., Macchi, P., Davoli,
M. and Drioli, E. (2007). Poly (vinylidene fluoride) membranes by phase
inversion: the role the casting and coagulation conditions play in their
morphology, crystalline structure and properties. European Polymer Journal,
43(4): 1557 - 1572.
11. Souzy, R. and Ameduri, B. (2005).
Functional fluoropolymers for fuel cell membranes. Progress in Polymer Science,
30(6): 644 - 687.
12. Drobny, J. G. (2008). Technology of
fluoropolymers. CRC Press, Florida.
13. Cui, Z., Drioli E. and Lee, Y. M.
(2014). Recent progress in fluoropolymers for membranes. Progress in Polymer Science,
39(1): 164 - 198.
14. Alkhudhiri, A., Darwish, N. and
Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination,
287: 2 - 18.
15. Kang, G.-D. and Cao, Y.-M.
(2014). Application and modification of poly (vinylidene fluoride)(PVDF)
membranes – A review. Journal of Membrane Science, 463: 145 - 165.
16. Deowan, S. A., Galiano, F., Hoinkis,
J., Johnson, D., Altinkaya, S. A., Gabriele, B., Hilal, N., Drioli, E. and
Figoli, A. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial
wastewater treatment. Journal of Membrane Science, 510: 524 -
532.
17. Zhan, X., Li, J., Huang, J.and
Chen, C. (2010). Enhanced pervaporation performance of multi-layer PDMS/PVDF
composite membrane for ethanol recovery from aqueous solution. Applied
Biochemistry and Biotechnology, 160(2): 632 - 642.
18. Mansourizadeh, A., Ismail, A. F.,
Abdullah, M. S. and Ng, B. C. (2010). Preparation of polyvinylidene fluoride
hollow fiber membranes for CO2 absorption using phase-inversion
promoter additives. Journal of Membrane Science, 355(1): 200
- 207.
19. Wang, J., Zheng, L., Wu, Z., Zhang,
Y. and Zhang, X. (2016). Fabrication of hydrophobic flat sheet and hollow fiber
membranes from PVDF and PVDF-CTFE for membrane distillation. Journal of Membrane Science,
497: 183 - 193.
20. Ameduri, B. (2009). From
vinylidene fluoride (VDF) to the applications of VDF-containing polymers and
copolymers: Recent developments and future trends. Chemical Reviews,
109(12): 6632 - 6686.
21. Feng, C., Shi, B., Li, G. and Wu,
Y. (2004). Preparation and properties of microporous membrane from poly
(vinylidene fluoride-co-tetrafluoroethylene)(F2.4) for membrane distillation. Journal
of Membrane Science, 237(1): 15 - 24.
22. Ooi, B., Yatim, N., Ahmad, A. and
Lai, S. (2012). Preparation of polyvinylidene fluoride membrane via dual
coagulation bath system and its wettability study. Journal of Applied Polymer
Science, 124(S1): 225 - 232
23. García-Fernández, L., García-Payo,
M. and Khayet, M. (2014). Effects of mixed solvents on the structural
morphology and membrane distillation performance of PVDF-HFP hollow fiber
membranes. Journal of Membrane Science, 468: 324 - 338.
24. Peng, N., Chung, T.-S. and Wang,
K. Y. (2008). Macrovoid evolution and critical factors to form macrovoid-free
hollow fiber membranes. Journal of Membrane Science, 318(1): 363
- 372.
25. Li, Q., Xu, Z. L. and Yu, L.Y.
(2010). Effects of mixed solvents and PVDF types on performances of PVDF
microporous membranes. Journal of Applied Polymer Science,
115(4): 2277 - 2287.
26. Hołda, A. K., Aernouts, B., Saeys
W. and Vankelecom, I. F. (2013). Study of polymer concentration and evaporation
time as phase inversion parameters for polysulfone-based SRNF membranes. Journal
of Membrane Science, 442: 196 - 205.