Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 365 - 371

DOI: https://doi.org/10.17576/mjas-2017-2102-11

 

 

 

PREPARATION AND CHARACTERIZATION OF DIFFERENT LOADING OF ZINC OXIDE ON ACTIVATED CARBON NANOFIBERS

 

(Penyediaan dan Pencirian Gentian-Nano Karbon Teraktif Pada Kepekatan Zink Oksida Yang Berbeza)

 

Faten Ermala Che Othman, Norhaniza Yusof*, Amirul Afiat Raffi, Hasrinah Hasbullah, Farhana Aziz,

Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail

 

Advanced Membrane Technology Research Centre,

Faculty of Chemical & Energy Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia

 

*Corresponding author: norhaniza@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The study deals on the modified PAN-based activated carbon nanofibers (ACNFs) embedded with different amount of zinc oxides (ZnO) (0, 5, 10, and 15% relative to PAN wt.) to be used as adsorbents for natural gas adsorption. The nanofibers (NFs) were successfully fabricated via electrospinning process at optimize parameters. The resultant NFs underwent three steps of pyrolysis process which are stabilization, carbonization and activation at optimum parameters. The morphological structure and diameter of pure and modified ACNFs were characterized using SEM while the existences of chemical bonds were analyzed by FTIR analysis. XRD analysis was done to identify the crystallinity of the ACNFs. BET method was used to identify the specific surface area (SSA) and nitrogen adsorption isotherm of the samples. The results showed that the SSA of ACNF5 (163.04 m2/g) is significantly higher compared to the pristine and other modified ACNFs, nevertheless the obtained results is much lower compared to average theoretical value. SEM micrograph depicted that all ACNF samples possessed average diameter of 300 – 500 nm with smooth and aligned structure. The presence of white spots as ZnO alongside the NFs has been confirmed with FTIR and XRD analysis. From these findings, it is believed that ACNFs/ZnO will become a new adsorbent with great potential for gas adsorption and storage in the near future applications.

 

Keywords:  activated carbon nanofibers, zinc oxide, polyacrylonitrile, specific surface area

 

Abstrak

Kajian ini membincangkan tentang gentian-nano karbon teraktif (ACNFs) terubah suai berasaskan polimer PAN yang digabungkan dengan kandungan zink oksida (ZnO) yang berbeza (0, 5, 10, dan 15% berdasarkan berat PAN) untuk digunakan sebagai penjerap dalam penjerapan gas asli. Gentian-nano (NFs) telah berjaya direka melalui proses putaran elektro menggunakan parameter-paramter optimum daripada kajian terdahulu. Kemudian, NFs yang terbentuk akan melalui tiga peringkat proses pirolisis iaitu penstabilan, karbonisasi, dan pengaktifan menggunakan parameter optimum daripada kajian terdahulu. Struktur morfologi dan diameter ACNFs tulen dan yang telah diubahsuai dengan ZnO telah dicirikan menggunakan SEM manakala kewujudan ikatan kimia telah dianalisis menggunakan FTIR. Selain itu, untuk mengenalpasti penghabluran ACNFs yang terhasil, analisis yang dikenali sebagai XRD telah dijalankan. Kaedah BET pula dijalankan untuk mengenal pasti luas permukaan tertentu (SSA) dan isoterma penjerapan nitrogen. Hasil kajian menunjukkan bahawa SSA sampel ACNF5 (163,04 m2/g) adalah lebih tinggi berbanding dengan ACNFs tulen atau ACNFs yang telah diubahsuai yang lain..Walau bagaimanapun, keputusan yang diperoleh menunjukkan SSA yang jauh lebih rendah berbanding dengan nilai teori purata. Melalui SEM mikrograf, semua sampel ACNFs yang dihasilkan melalui kajian ini memiliki diameter purata dari 300 hingga 500 nm dengan struktur licin dan sejajar. Kehadiran bintik putih sebagai ZnO telah disahkan melalui analisis FTIR dan XRD. Penemuan ini membuktikan bahawa ACNFs/ZnO akan menjadi penjerap baru yang mempunyai potensi besar dalam aplikasi penjerapan dan penyimpanan gas pada masa hadapan.

 

Kata kunci:  gentian karbon teraktif, zink oksida, poliakrilonitril, luas permukaan spesifik

 

References

1.       Diez, N., Díaz, P., Álvarez, P., González, Z., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2014). Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 136: 214 – 217.

2.       Liu, H. Q. and Hsieh, Y. L. (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science B: Polymer Physics, 40: 2119 – 2129.

3.       Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D. and Linares-Solano, A. (2009). Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 124(1-3): 110 – 116.

4.       Díez, N., Alvarez, P., Granda, M., Blanco, C., Santamaria, R. and Menéndez, R. (2015). A novel approach for the production of chemically activated carbon fibers. Chemical Engineering Journal, 260: 463 – 468.

5.       Kumar, P. R., Khan, N., Vivekanandhan, S., Satyanarayana, N., Mohanty, A. K., and Misra, M. (2012). Nanofibers: Effective generation by electrospinning and their applications. Journal of Nanoscience and Nanotechnology, 12: 1 – 25.

6.       Dadvar, S., Tavanai, H. and Morshed, M. (2012). Effect of embedding MgO and Al2O3 nanoparticles in the precursor on the pore characteristics of PAN based activated carbon nanofibers. Journal of Analytical and Applied Pyrolysis, 98: 98 – 105.

7.       Bhardwaj, N. and Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28: 325 – 347.

8.       Venugopal, J., Zhang, Y. Z. and Ramakrishna, S. (2004). Electrospun nanofibres: biomedical applications. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 218(1): 35 – 45.

9.       Khalil, K. A., Sherif, E. M., Nabawy, A. M., Abdo, H. S., Marzouk, W. W. and Alharbi, H. F. (2016). Titanium carbide nanofibers-reinforced aluminium compacts, a new strategy to enhance mechanical properties. Materials, 9(5): 399 – 413.

10.    Haroosh, H. J., Dong, Y., Chaudhary, D. S., Ingram, G. D. and Yusa, S. I. (2013). Electrospun PLA/PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halleysite nanotubes (HNT). Applied Physics A: Materials Science and Processing, 110(2): 433 – 442.

11.    Harish, K. and Renu, R. (2013). Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. International Letters of Chemistry, Physical and Astronomy, 19: 26 – 36.

12.    Sun, M., Lan, B., Lin, T., Cheng, G., Ye, F., Yu, L., Cheng, X. and Zheng, X. (2013). Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. CrystEngComm, 15(35): 7010 – 7018.

13.    Yusof, N. and Ismail, A. F. (2012). Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. Journal of Analytical and Applied Pyrolysis, 93: 1 – 13.

14.    Babu, K. S., Reddy, A. R., Sujatha, C., Reddy, K. V. and Mallika, A. N. (2013). Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramics, 2(3): 260 – 265.

15.    Cipriani, E., Zanetti, M., Bracco, P., Brunella, V., Luda, M. P. and Costa, L. (2015) Crosslinking and carbonization processes in PAN films and nanofibers. Polymer Degradation and Stability, 123: 178 –188.

16.    Kanjwal, M. A., Barakat, N. A., Sheikh, F. A., Park, D. K. and Kim, H. Y. (2010). Physicochemical characterizations of electrospun (ZnO-GeO2) nanofibers and their optical properties. Journal of Materials Science, 45(14): 3833 – 3840.

17.    Im, J. S., Park, S. J., Kim, T. J., Kim, Y. H. and Lee, Y. S. (2009). The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. Journal of Colloid and Interface Science, 318 (1): 42 – 49.

 




Previous                    Content                    Next