Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 365 - 371
DOI:
https://doi.org/10.17576/mjas-2017-2102-11
PREPARATION
AND CHARACTERIZATION OF DIFFERENT LOADING OF ZINC OXIDE ON ACTIVATED CARBON
NANOFIBERS
(Penyediaan
dan Pencirian Gentian-Nano Karbon Teraktif Pada Kepekatan Zink Oksida Yang
Berbeza)
Faten Ermala Che
Othman, Norhaniza Yusof*, Amirul Afiat Raffi, Hasrinah Hasbullah,
Farhana Aziz,
Wan Norharyati
Wan Salleh, Ahmad Fauzi Ismail
Advanced
Membrane Technology Research Centre,
Faculty
of Chemical & Energy Engineering,
Universiti
Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
*Corresponding author: norhaniza@petroleum.utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
The study deals on the modified PAN-based
activated carbon nanofibers (ACNFs) embedded with different amount of zinc
oxides (ZnO) (0, 5, 10, and 15% relative to PAN wt.) to be used as adsorbents for
natural gas adsorption. The nanofibers (NFs) were successfully fabricated via
electrospinning process at optimize parameters. The resultant NFs underwent
three steps of pyrolysis process which are stabilization, carbonization and
activation at optimum parameters. The morphological structure and diameter of
pure and modified ACNFs were characterized using SEM while the existences of
chemical bonds were analyzed by FTIR analysis. XRD analysis was done to
identify the crystallinity of the ACNFs. BET method was used to identify the
specific surface area (SSA) and nitrogen adsorption isotherm of the samples.
The results showed that the SSA of ACNF5 (163.04 m2/g) is
significantly higher compared to the pristine and other modified ACNFs,
nevertheless the obtained results is much lower compared to average theoretical
value. SEM micrograph depicted that all ACNF samples possessed average diameter
of 300 – 500 nm with smooth and aligned structure. The presence of white spots
as ZnO alongside the NFs has been confirmed with FTIR and XRD analysis. From
these findings, it is believed that ACNFs/ZnO will become a new adsorbent with
great potential for gas adsorption and storage in the near future applications.
Keywords: activated carbon nanofibers, zinc oxide,
polyacrylonitrile, specific surface area
Abstrak
Kajian ini membincangkan tentang gentian-nano karbon teraktif (ACNFs) terubah
suai berasaskan polimer PAN yang digabungkan dengan kandungan zink oksida (ZnO)
yang berbeza (0, 5, 10, dan 15% berdasarkan berat PAN) untuk digunakan sebagai
penjerap dalam penjerapan gas asli. Gentian-nano (NFs) telah berjaya direka melalui
proses putaran elektro menggunakan parameter-paramter optimum daripada kajian
terdahulu. Kemudian, NFs yang terbentuk akan melalui tiga peringkat proses
pirolisis iaitu penstabilan, karbonisasi, dan pengaktifan menggunakan parameter
optimum daripada kajian terdahulu. Struktur morfologi dan diameter ACNFs tulen
dan yang telah diubahsuai dengan ZnO telah dicirikan menggunakan SEM manakala
kewujudan ikatan kimia telah dianalisis menggunakan FTIR. Selain itu, untuk
mengenalpasti penghabluran ACNFs yang terhasil, analisis yang dikenali sebagai XRD
telah dijalankan. Kaedah BET pula dijalankan untuk mengenal pasti luas
permukaan tertentu (SSA) dan isoterma penjerapan nitrogen. Hasil kajian
menunjukkan bahawa SSA sampel ACNF5 (163,04 m2/g) adalah lebih
tinggi berbanding dengan ACNFs tulen atau ACNFs yang telah diubahsuai yang
lain..Walau bagaimanapun, keputusan yang diperoleh menunjukkan SSA yang jauh
lebih rendah berbanding dengan nilai teori purata. Melalui SEM mikrograf, semua
sampel ACNFs yang dihasilkan melalui kajian ini memiliki diameter purata dari 300
hingga 500 nm dengan struktur licin dan sejajar. Kehadiran bintik putih sebagai
ZnO telah disahkan melalui analisis FTIR dan XRD. Penemuan ini membuktikan
bahawa ACNFs/ZnO akan menjadi penjerap baru yang mempunyai potensi besar dalam
aplikasi penjerapan dan penyimpanan gas pada masa hadapan.
Kata kunci: gentian karbon teraktif, zink oksida, poliakrilonitril,
luas permukaan spesifik
References
1.
Diez,
N., Díaz, P., Álvarez, P., González, Z., Granda, M., Blanco, C., Santamaría, R.
and Menéndez, R. (2014). Activated carbon fibers prepared directly from
stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 136: 214 – 217.
2.
Liu,
H. Q. and Hsieh, Y. L. (2002). Ultrafine fibrous cellulose membranes from electrospinning
of cellulose acetate. Journal of Polymer
Science B: Polymer Physics, 40: 2119 – 2129.
3.
Alcañiz-Monge,
J., Lozano-Castelló, D., Cazorla-Amorós, D. and Linares-Solano, A. (2009).
Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 124(1-3): 110 – 116.
4.
Díez,
N., Alvarez, P., Granda, M., Blanco, C., Santamaria, R. and Menéndez, R.
(2015). A novel approach for the production of chemically activated carbon
fibers. Chemical Engineering Journal,
260: 463 – 468.
5.
Kumar,
P. R., Khan, N., Vivekanandhan, S., Satyanarayana, N., Mohanty, A. K., and
Misra, M. (2012). Nanofibers: Effective generation by electrospinning and their
applications. Journal of Nanoscience and
Nanotechnology, 12: 1 – 25.
6.
Dadvar,
S., Tavanai, H. and Morshed, M. (2012). Effect of embedding MgO and Al2O3
nanoparticles in the precursor on the pore characteristics of PAN based
activated carbon nanofibers. Journal of
Analytical and Applied Pyrolysis, 98: 98 – 105.
7.
Bhardwaj,
N. and Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication
technique. Biotechnology Advances,
28: 325 – 347.
8.
Venugopal,
J., Zhang, Y. Z. and Ramakrishna, S. (2004). Electrospun nanofibres: biomedical
applications. Proceedings of the
Institution of Mechanical Engineers, Part N: Journal of Nanomaterials,
Nanoengineering and Nanosystems, 218(1): 35 – 45.
9.
Khalil,
K. A., Sherif, E. M., Nabawy, A. M., Abdo, H. S., Marzouk, W. W. and Alharbi,
H. F. (2016). Titanium carbide nanofibers-reinforced aluminium compacts, a new
strategy to enhance mechanical properties. Materials,
9(5): 399 – 413.
10.
Haroosh,
H. J., Dong, Y., Chaudhary, D. S., Ingram, G. D. and Yusa, S. I. (2013).
Electrospun PLA/PCL composites embedded with unmodified and
3-aminopropyltriethoxysilane (ASP) modified halleysite nanotubes (HNT). Applied Physics A: Materials Science and
Processing, 110(2): 433 – 442.
11.
Harish,
K. and Renu, R. (2013). Structural and optical characterization of ZnO nanoparticles
synthesized by microemulsion route. International
Letters of Chemistry, Physical and Astronomy, 19: 26 – 36.
12.
Sun,
M., Lan, B., Lin, T., Cheng, G., Ye, F., Yu, L., Cheng, X. and Zheng, X. (2013).
Controlled synthesis of nanostructured manganese oxide: crystalline evolution
and catalytic activities. CrystEngComm,
15(35): 7010 – 7018.
13.
Yusof,
N. and Ismail, A. F. (2012). Post spinning and pyrolysis processes of
polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A
review. Journal of Analytical and Applied
Pyrolysis, 93: 1 – 13.
14.
Babu,
K. S., Reddy, A. R., Sujatha, C., Reddy, K. V. and Mallika, A. N. (2013).
Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramics, 2(3): 260 – 265.
15.
Cipriani,
E., Zanetti, M., Bracco, P., Brunella, V., Luda, M. P. and Costa, L. (2015)
Crosslinking and carbonization processes in PAN films and nanofibers. Polymer Degradation and Stability, 123:
178 –188.
16.
Kanjwal,
M. A., Barakat, N. A., Sheikh, F. A., Park, D. K. and Kim, H. Y. (2010).
Physicochemical characterizations of electrospun (ZnO-GeO2)
nanofibers and their optical properties. Journal
of Materials Science, 45(14): 3833 – 3840.
17.
Im,
J. S., Park, S. J., Kim, T. J., Kim, Y. H. and Lee, Y. S. (2009). The study of
controlling pore size on electrospun carbon nanofibers for hydrogen adsorption.
Journal of Colloid and Interface Science,
318 (1): 42 – 49.