Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 372 - 380

DOI: https://doi.org/10.17576/mjas-2017-2102-12

 

 

 

Surface modification of PSF/TiO2 membranes using silane coupling agents and DC plasma technique

 

(Modifikasi Permukaan Membran PSF/TiO2 Menggunakan Ejen Gandingan Silana dan Teknik Plasma DC)

 

Soraya Ruangdit1, Thawat Chittrakarn1*, Sudkhet Anuchit1, Yutthana Tirawanichakul1, Chalad Yuenyao2

 

1Membrane Science and Technology Research Center, Department of Physics, Faculty of Science,

Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

2Department of Physics, Faculty of Science and Technology,

Phetchabun Rajabhat University, 83 M.11 St.Saraburi-Lom Sak, Muang, Phetchabun 67000, Thailand

 

*Corresponding author: tawat.c@psu.ac.th

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Preparation and surface modification of PSF/TiO2 membranes by DC Ar-plasma were conducted to improve membrane hydrophilicity and gas permeation efficiency. Using TiO2 as a photocatalyst, photocatalysis could be induced upon the plasma exposure. Radicals from this process led to an increase in the membrane hydrophilicity. In order to improve the dispersion quality of TiO2 in an organic membrane, methyltrimethoxysilane (TMMS) or ethyltrimethoxysilane (TEMS) was utilized as coupling agents to modify the TiO2 surface prior to blending. The coupling agents caused organic silane bonds on the TiO2 surface leading to a better dispersion of nanoparticle on the membrane matrix. The incorporation of modified-TiO2 tended to decrease membrane water contact angles (WCA) to the lowest value when compared with PSF membranes with unmodified TiO2 and neat PSF membranes. Results also showed that TMMS could produce better outcomes compared to TEMS. It was found that the modified-TiO2 could decrease the WCA. More importantly, pressure normalized flux of CO2 and CH4 gases of PSF/modified-TiO2 membrane was found to increase with slightly decrease in the selectivity of CO2/CH4.

 

Keywords:    silane coupling agent, surface modification, gas separation membrane, low pressure DC-plasma, polysulfone

 

Abstrak

Penyediaan dan modifikasi permukaan membran PSF/TiO2 oleh DC Ar-plasma telah dijalankan untuk meningkatkan kehidrofilikan membran dan kecekapan penyerapan gas. Menggunakan TiO2 sebagai foto-pemangkin, fotopemangkinan dapat didorong apabila terdedah kepada plasma. Radikal daripada proses ini membawa kepada peningkatan dalam kehidrofilikan membran. Untuk meningkatkan kualiti penyebaran TiO2 dalam membran organik, metiltrimetoksisilana (TMMS) atau etiltrimetoksisilana (TEMS) telah digunakan sebagai agen gandingan untuk mengubah suai permukaan TiO2 sebelum campuran. Ejen-ejen gandingan menyebabkan ikatan silana organik di permukaan TiO2 yang membawa kepada penyebaran nanopartikel yang lebih baik pada matriks membran. Penggabungan TiO2 yang diubahsuai cenderung untuk mengurangkan sudut sentuhan air membran (WCA) kepada nilai yang paling rendah berbanding membran PSF dengan TiO2 yang tidak diubahsuai dan membran PSF kawalan. Keputusan juga menunjukkan bahawa TMMS boleh menghasilkan hasil yang lebih baik berbanding PPSMI. Ia telah mendapati bahawa TiO2 yang diubahsuai boleh mengurangkan WCA. Lebih penting lagi, tekanan fluks normal gas CO2 dan CH4 daripada membran PSF/TiO2 yang diubahsuai didapati meningkat dengan sedikit penurunan kepilihan CO2/CH4.

 

Kata kunci:    ejen gandingan silana, modifikasi permukaan, membran pemisahan gas, tekanan rendah dc-plasma, polisulfon

 

References

1.       Yuenyao, C., Tirawanichakul, Y. and Chittrakarn, T. (2015). Asymmetric polysulfone gas separation membranes treated by low pressure DC glow discharge plasmas. Journal of Applied Polymer Science, 132(24): 42116 – 42126.

2.       Zhang, Y. and Liu, P. (2015). Polysulfone (PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning waste water. Journal of Membrane Science, 493: 275 – 284.

3.       Xueli, G., Haizeng, W., Jian, W., Xing, H. and Congjie, G. (2013). Surface-modified PSF UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance. Journal of Membrane Science, 445: 146 – 155.

4.       Yang, Y., Zhang, H., Wang, P., Zheng, Q. and Li, J. (2007). The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 288: 231 – 238.

5.       Konruang, S., Sirijarukul, S., Wanichapichart, P., Yu, L. and Chittrakarn, T. (2015). Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance.  Journal of Applied Polymer Science, 132(25): 42074 – 42082.

6.       Bae, Y.-S. and Lee, C.-H. (2005). Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Journal of Carbon, 43: 95 – 107.

7.       Huang, S.-Y., Ganesan, P. and Popov, B. N. (2010). Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Journal of Applied Catalysis B: Environmental, 96: 224 – 231.

8.       Albiter, E., Valenzuela, M. A., Alfaro, S., Valverde-Aguilar, G. and Martínez-Pallares, F. M. (2015). Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties. Journal of Saudi Chemical Society, 19: 563 – 573.

9.       Djurišic, A. B., Leung, Y. H. and Ching Ng, A. M. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Journal of Royal Society of Chemistry, 1: 400 – 410.

10.     Monllor-Satoca, D., Gómez, R., González-Hidalgo, M. and Salvador, P. (2007). The ‘‘Direct–Indirect’’ model: An alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Journal of Catalysis Today, 129: 247 – 255.

11.    Hashimoto, K., Irie, H. and Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, 44(12): 8269 – 8285.

12.    Khatun, N., Rini, E. G., Shirage, P., Rajput, P., Jha, S. N. and Sen, S. (2016). Effect of lattice distortion on band gap decrement due to vanadium substitution in TiO2 nanoparticles. Journal of Materials Science in Semiconductor Processing, 50: 7 – 13.

13.    Liu, H., Lv, T. and Zhu, Z. (2016). Direct band gap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity. Journal of Solar Energy Materials & Solar Cells, 153: 1 – 8.

14.    Madaeni, S. S., Badieh, M., Vatanpour, V. and Ghaemi, N. (2012). Effect of titanium dioxide nanoparticles on polydimethylsiloxane/polyethersulfone composite membranes for gas separation. Journal of Polymer Engineering and Science, 56: 2664 – 2674.

15.    Chen, Q. and Yakovlev, N. L. (2010). Adsorption and interaction of organic silanes on TiO2 nanoparticles. Journal of Applied Surface Science, 257: 1395 – 1400.

16.    Zhao, J., Milanova, M., Marijn, M.C.G. and Dutschk, V. (2012). Surface modification of TiO2 nanoparticles with silane coupling agents. Journal of Colloids and Surfaces A, 413: 273 – 279.

17.    Li, Z., Hou, B., Xu, D., Sun, Y., Hu, W. and Deng, F. (2005). Comparative study of sol–gel-hydrothermal and sol-gel synthesis of titania–silica composite nanoparticles. Journal of Solid State Chemistry, 178: 1395 – 1405.




Previous                    Content                    Next