Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 372 - 380
DOI:
https://doi.org/10.17576/mjas-2017-2102-12
Surface
modification of PSF/TiO2 membranes using silane coupling agents and
DC plasma technique
(Modifikasi Permukaan Membran PSF/TiO2 Menggunakan Ejen
Gandingan Silana dan Teknik Plasma DC)
Soraya Ruangdit1, Thawat Chittrakarn1*,
Sudkhet Anuchit1, Yutthana Tirawanichakul1, Chalad Yuenyao2
1Membrane Science
and Technology Research Center, Department of Physics, Faculty of Science,
Prince of Songkla University, Hat Yai,
Songkhla 90112, Thailand
2Department
of Physics, Faculty of Science and Technology,
Phetchabun Rajabhat University, 83
M.11 St.Saraburi-Lom Sak, Muang, Phetchabun 67000, Thailand
*Corresponding author: tawat.c@psu.ac.th
Received:
26 August 2016; Accepted: 8 January 2017
Abstract
Preparation and surface modification of
PSF/TiO2 membranes by DC Ar-plasma were conducted to improve
membrane hydrophilicity and gas permeation efficiency. Using TiO2 as
a photocatalyst, photocatalysis could be induced upon the plasma exposure.
Radicals from this process led to an increase in the membrane hydrophilicity.
In order to improve the dispersion quality of TiO2 in an organic
membrane, methyltrimethoxysilane (TMMS) or ethyltrimethoxysilane (TEMS) was
utilized as coupling agents to modify the TiO2 surface prior to
blending. The coupling agents caused organic silane bonds on the TiO2 surface
leading to a better dispersion of nanoparticle on the membrane matrix. The
incorporation of modified-TiO2 tended to decrease membrane water
contact angles (WCA) to the lowest value when compared with PSF membranes with
unmodified TiO2 and neat PSF membranes. Results also showed that
TMMS could produce better outcomes compared to TEMS. It was found that the
modified-TiO2 could decrease the WCA. More importantly, pressure
normalized flux of CO2 and CH4 gases of PSF/modified-TiO2
membrane was found to increase with slightly decrease in the selectivity of CO2/CH4.
Keywords: silane coupling agent, surface modification,
gas separation membrane, low pressure DC-plasma, polysulfone
Abstrak
Penyediaan dan modifikasi permukaan membran PSF/TiO2
oleh DC Ar-plasma telah dijalankan untuk meningkatkan kehidrofilikan membran
dan kecekapan penyerapan gas. Menggunakan TiO2 sebagai
foto-pemangkin, fotopemangkinan dapat didorong apabila terdedah kepada plasma.
Radikal daripada proses ini membawa kepada peningkatan dalam kehidrofilikan
membran. Untuk meningkatkan kualiti penyebaran TiO2 dalam membran
organik, metiltrimetoksisilana (TMMS) atau etiltrimetoksisilana (TEMS) telah
digunakan sebagai agen gandingan untuk mengubah suai permukaan TiO2
sebelum campuran. Ejen-ejen gandingan menyebabkan ikatan silana organik di
permukaan TiO2 yang membawa kepada penyebaran nanopartikel yang
lebih baik pada matriks membran. Penggabungan TiO2 yang diubahsuai
cenderung untuk mengurangkan sudut sentuhan air membran (WCA) kepada nilai yang
paling rendah berbanding membran PSF dengan TiO2 yang tidak
diubahsuai dan membran PSF kawalan. Keputusan juga menunjukkan bahawa TMMS
boleh menghasilkan hasil yang lebih baik berbanding PPSMI. Ia telah mendapati
bahawa TiO2 yang diubahsuai boleh mengurangkan WCA. Lebih penting
lagi, tekanan fluks normal gas CO2 dan CH4 daripada
membran PSF/TiO2 yang diubahsuai didapati meningkat dengan sedikit
penurunan kepilihan CO2/CH4.
Kata kunci: ejen
gandingan silana, modifikasi permukaan, membran pemisahan gas, tekanan rendah
dc-plasma, polisulfon
References
1.
Yuenyao,
C., Tirawanichakul, Y. and Chittrakarn, T. (2015). Asymmetric polysulfone gas
separation membranes treated by low pressure DC glow discharge plasmas. Journal
of Applied Polymer Science, 132(24): 42116 – 42126.
2.
Zhang,
Y. and Liu, P. (2015). Polysulfone (PSF) composite membrane with micro-reaction
locations (MRLs) made by doping sulfated TiO2 deposited on SiO2
nanotubes (STSNs) for cleaning waste water. Journal of Membrane Science, 493: 275 – 284.
3.
Xueli,
G., Haizeng, W., Jian, W., Xing, H. and Congjie, G. (2013). Surface-modified
PSF UF membrane by UV-assisted graft polymerization of capsaicin derivative
moiety for fouling and bacterial resistance. Journal of Membrane Science, 445:
146 – 155.
4.
Yang,
Y., Zhang, H., Wang, P., Zheng, Q. and Li, J. (2007). The influence of
nano-sized TiO2 fillers on the morphologies and properties of PSF UF
membrane. Journal of Membrane Science, 288: 231 – 238.
5.
Konruang,
S., Sirijarukul, S., Wanichapichart, P., Yu, L. and Chittrakarn, T. (2015).
Ultraviolet-ray treatment of polysulfone membranes on the O2/N2
and CO2/CH4 separation performance. Journal of Applied Polymer Science, 132(25): 42074 – 42082.
6.
Bae,
Y.-S. and Lee, C.-H. (2005). Sorption kinetics of eight gases on a carbon
molecular sieve at elevated pressure. Journal of Carbon, 43: 95 – 107.
7.
Huang,
S.-Y., Ganesan, P. and Popov, B. N. (2010). Electrocatalytic activity and stability
of niobium-doped titanium oxide supported platinum catalyst for polymer
electrolyte membrane fuel cells. Journal of Applied Catalysis B:
Environmental, 96: 224 – 231.
8.
Albiter,
E., Valenzuela, M. A., Alfaro, S., Valverde-Aguilar, G. and Martínez-Pallares,
F. M. (2015). Photocatalytic deposition of Ag nanoparticles on TiO2:
Metal precursor effect on the structural and photoactivity properties. Journal
of Saudi Chemical Society, 19: 563 – 573.
9.
Djurišic,
A. B., Leung, Y. H. and Ching Ng, A. M. (2014). Strategies for improving the
efficiency of semiconductor metal oxide photocatalysis. Journal of Royal
Society of Chemistry, 1: 400 – 410.
10.
Monllor-Satoca, D., Gómez, R.,
González-Hidalgo, M. and Salvador, P. (2007). The ‘‘Direct–Indirect’’ model: An
alternative kinetic approach in heterogeneous photocatalysis based on the
degree of interaction of dissolved pollutant species with the semiconductor
surface. Journal of Catalysis Today, 129: 247 – 255.
11.
Hashimoto,
K., Irie, H. and Fujishima, A. (2005). TiO2 photocatalysis: A
historical overview and future prospects. Japanese Journal of Applied
Physics, 44(12): 8269 – 8285.
12.
Khatun,
N., Rini, E. G., Shirage, P., Rajput, P., Jha, S. N. and Sen, S. (2016). Effect
of lattice distortion on band gap decrement due to vanadium substitution in TiO2
nanoparticles. Journal of Materials Science in Semiconductor Processing,
50: 7 – 13.
13.
Liu,
H., Lv, T. and Zhu, Z. (2016). Direct band gap narrowing of TiO2/MoO3
heterostructure composites for enhanced solar-driven photocatalytic
activity. Journal of Solar Energy Materials & Solar Cells, 153: 1 – 8.
14.
Madaeni,
S. S., Badieh, M., Vatanpour, V. and Ghaemi, N. (2012). Effect of titanium
dioxide nanoparticles on polydimethylsiloxane/polyethersulfone composite
membranes for gas separation. Journal of Polymer Engineering and Science,
56: 2664 – 2674.
15.
Chen,
Q. and Yakovlev, N. L. (2010). Adsorption and interaction of organic silanes
on TiO2 nanoparticles. Journal of Applied Surface Science,
257: 1395 – 1400.
16.
Zhao,
J., Milanova, M., Marijn, M.C.G. and Dutschk, V. (2012). Surface modification
of TiO2 nanoparticles with silane coupling agents. Journal of
Colloids and Surfaces A, 413: 273 – 279.
17.
Li,
Z., Hou, B., Xu, D., Sun, Y., Hu, W. and Deng, F. (2005). Comparative study of
sol–gel-hydrothermal and sol-gel synthesis of titania–silica composite
nanoparticles. Journal of Solid State Chemistry, 178: 1395 – 1405.