Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 409 - 415
DOI:
https://doi.org/10.17576/mjas-2017-2102-16
The influence of
carbonization temperature on the development of carbon membrane with superior CO2/CH4
separation performance
(Pengaruh Suhu
Karbonisasi Kepada Pembangunan Membran Karbon Dengan Kesan Pemisahan Gas CO2/CH4
Yang Cemerlang)
Norazlianie Sazali1,2,Wan Norharyati Wan Salleh1,2*, Mohamad Azuwa
Mohamed1,2, Nor Hafiza Ismail1,2, Norafiqah Rosman1,2,
Farhana Aziz1,2, Ahmad Fauzi Ismail1,2
1Advanced Membrane Technology Research Centre (AMTEC)
2Faculty of Chemical and Energy Engineering (FCEE)
Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul
Takzim, Malaysia.
*Corresponding author: hayati@petroleum.utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
In this study, P84-based carbon tubular
membranes were fabricated and characterized in terms of their structural
morphology and gas permeation properties, by using Scanning Electron Microscopy
(SEM) and pure gas permeation system, respectively. The polymer tubular
membranes were then carbonized under nitrogen atmosphere at different carbonization temperatures of
600, 700, 800 and 900 °C, with heating rate of 3°C/min and thermal soak time of
30 minutes. The manipulation of
carbonization temperatures was required to see if it could enhance the
permeation properties as desired. Pure gas permeation tests were
performed using CO2 and CH4 gases. The CO2/CH4
selectivity was found increasing as the carbonization temperature was increased
from 600 to 800 °C. The carbon membrane carbonized at 800°C showed the most
promising result for CO2/CH4 selectivity, rendering 69.48
and CO2 permeance of 206.1 GPU.
Keywords: carbonization
temperature, tubular support, P84 copolyimide, carbon membrane, gas separation
Abstrak
Dalam kajian
ini, membran tiub karbon berasaskan P84 telah direka dan dicirikan dari segi
morfologi dan penyerapan gas dengan menggunakan mikroskopi elektoron
pengimbasan (SEM), dan sistem penyerapan gas tulen. Membran polimer tiub
kemudian dikarbonisasi dalam kawalan gas nitrogen pada suhu karbonisasi berbeza
iaitu 600, 700, 800 dan 900 °C dengan kadar pemanasan 3 °C/min dan kawalan haba
selama 30 minit. Pengubahsuaian syarat karbonisasi diperlukan untuk
mempertingkatkan ciri – ciri penyerapan gas. Ujian penyerapan gas tulen telah
dilakukan dengan menggunakan gas CO2 dan gas CH4.
Keterpilihan gas CO2/CH4 telah meningkat apabila suhu
karbonisasi meningkat daripada 600 ke 800°C. Daripada kajian ini, membran
karbon yang dikarbonisasi pada suhu 800 °C menunjukkan bacaan yang paling
tinggi dengan nilai keterpilihan CO2 /CH4 sebanyak 69.48
dan nilai kebolehtelapan CO2 ialah 206.1 GPU.
Kata kunci: suhu karbonisasi, sokongan tubul, P84 kopolimid, membran
karbon, pemisahan gas
References
1.
Favre, E.
(2010). Polymeric membranes for gas
separation, in comprehensive membrane science and engineering, E. Drioli and L.
Giorno (Editors). Elsevier: Oxford: pp. 155 - 212.
2.
Lie, J. A. and Hägg, M.-B. (2006). Carbon membranes from
cellulose: Synthesis, performance and regeneration. Journal of Membrane Science,
284: 79 - 86.
3.
Adewole, J. K., Ahmad, A. L., Ismail, S. and Leo, C. P.
(2013). Current challenges in membrane separation of CO2 from
natural gas: A review. International Journal of Greenhouse Gas
Control, 17: 46 - 65.
4.
Md Nordin, N. A. H., Racha, S. M., Matsuura, T., Misdan, N.,
Sani, N. A. A., Ismail, A. F. and Mustafa, A. (2015). Facile modification of
ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis
and preparation. RSC Advances, 5: 43110 - 43120.
5.
Salleh, W. N. W., Ismail, A. F., Matsuura, T. and Abdullah,
M. S. (2011). Precursor selection and process conditions in the preparation of
carbon membrane for gas separation: A review.
Separation & Purification Reviews,
40: 261 - 311.
6.
Robeson, L. M. (1991). Correlation of separation factor
versus permeability for polymeric membranes.
Journal of Membrane Science, 62: 165 -
185.
7.
Reuse, E. (2016). Polymeric membranes for gas separation, in
reference module in materials science and materials engineering. Elsevier.
8.
Gilron, J. and Soffer, A. (2002). Knudsen diffusion in
microporous carbon membranes with molecular sieving character. Journal
of Membrane Science, 209: 339 - 352.
9.
Sazali, N., Salleh, W. N. W., Nordin, M., Hadi, N. A., Harun,
Z. and Ismail, A. F. (2015). Matrimid-based carbon tubular membranes: The
effect of the polymer composition. Journal of Applied Polymer Science, 132:
42394 - 42400.
10.
Saufi, S. M. and Ismail, A. F. (2004). Fabrication of carbon
membranes for gas separation - A review.
Carbon, 42: 241 - 259.
11.
Briceño, K., Montané, D., Garcia-Valls, R., Iulianelli, A.
and Basile, A. (2012). Fabrication variables affecting the structure and
properties of supported carbon molecular sieve membranes for hydrogen
separation. Journal of Membrane Science, 415 – 416: 288 - 297.
12.
Kargari, A., Shamsabadi, A. A. and Babaheidari, M. B. (2014).
Influence of coating conditions on the H2 separation performance
from H2/CH4 gas mixtures by the PDMS/PEI composite
membrane. International Journal of Hydrogen Energy, 39: 6588 - 6597.
13.
Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M. and Ismail,
A. F. (2015) Matrimid-based carbon tubular membrane: Effect of carbonization
environment. Journal of Industrial and Engineering Chemistry, 32: 167 - 171.
14.
Lua, A. C. and Shen, Y. (2013). Preparation and
characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas
separation. Journal of Membrane Science, 429: 155 - 167.
15.
Basu, A., Akhtar, J., Rahman, M. H. and Islam, M. R. (2004). A
review of separation of gases using membrane systems. Petroleum Science and
Technology, 22:1343 - 1368.
16.
Salleh, W. N. W. and Ismail, A. F. (2012). Fabrication and
characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4
and CO2/N2 separation.
AIChE Journal, 58: 3167 - 3175.
17.
Fuertes, A. B., Nevskaia, D. M. and Centeno, T. A. (1999). Carbon
composite membranes from Matrimid® and Kapton® polyimides for gas separation. Microporous
and Mesoporous Materials, 33: 115 - 125.
18.
Ismail, A. F. and David, L. I. B. (2001). A review on the
latest development of carbon membranes for gas separation. Journal of Membrane Science,
193: 1 - 18.
19.
Hosseini, S. S., Peng, N., and Chung, T. S. (2010). Gas
separation membranes developed through integration of polymer blending and
dual-layer hollow fiber spinning process for hydrogen and natural gas
enrichments. Journal of Membrane Science, 349: 156 - 166.
20.
Barsema, J. N., Klijnstra, S. D., Balster, J. H., van der
Vegt, N. F., Koops, G. H. and Wessling, M. (2004). Intermediate polymer to
carbon gas separation membranes based on Matrimid PI. Journal of Membrane Science,
238: 93 - 102.