Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 409 - 415

DOI: https://doi.org/10.17576/mjas-2017-2102-16

 

 

 

The influence of carbonization temperature on the development of carbon membrane with superior CO2/CH4 separation performance

 

(Pengaruh Suhu Karbonisasi Kepada Pembangunan Membran Karbon Dengan Kesan Pemisahan Gas CO2/CH4 Yang Cemerlang)

 

Norazlianie Sazali1,2,Wan Norharyati Wan Salleh1,2*, Mohamad Azuwa Mohamed1,2, Nor Hafiza Ismail1,2, Norafiqah Rosman1,2, Farhana Aziz1,2, Ahmad Fauzi Ismail1,2

 

1Advanced Membrane Technology Research Centre (AMTEC)

2Faculty of Chemical and Energy Engineering (FCEE)

Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia.

 

*Corresponding author: hayati@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

In this study, P84-based carbon tubular membranes were fabricated and characterized in terms of their structural morphology and gas permeation properties, by using Scanning Electron Microscopy (SEM) and pure gas permeation system, respectively. The polymer tubular membranes were then carbonized under nitrogen atmosphere at different carbonization temperatures of 600, 700, 800 and 900 °C, with heating rate of 3°C/min and thermal soak time of 30 minutes. The manipulation of carbonization temperatures was required to see if it could enhance the permeation properties as desired. Pure gas permeation tests were performed using CO2 and CH4 gases. The CO2/CH4 selectivity was found increasing as the carbonization temperature was increased from 600 to 800 °C. The carbon membrane carbonized at 800°C showed the most promising result for CO2/CH4 selectivity, rendering 69.48 and CO2 permeance of 206.1 GPU. 

 

Keywords:  carbonization temperature, tubular support, P84 copolyimide, carbon membrane, gas separation

 

Abstrak

Dalam kajian ini, membran tiub karbon berasaskan P84 telah direka dan dicirikan dari segi morfologi dan penyerapan gas dengan menggunakan mikroskopi elektoron pengimbasan (SEM), dan sistem penyerapan gas tulen. Membran polimer tiub kemudian dikarbonisasi dalam kawalan gas nitrogen pada suhu karbonisasi berbeza iaitu 600, 700, 800 dan 900 °C dengan kadar pemanasan 3 °C/min dan kawalan haba selama 30 minit. Pengubahsuaian syarat karbonisasi diperlukan untuk mempertingkatkan ciri – ciri penyerapan gas. Ujian penyerapan gas tulen telah dilakukan dengan menggunakan gas CO2 dan gas CH4. Keterpilihan gas CO2/CH4 telah meningkat apabila suhu karbonisasi meningkat daripada 600 ke 800°C. Daripada kajian ini, membran karbon yang dikarbonisasi pada suhu 800 °C menunjukkan bacaan yang paling tinggi dengan nilai keterpilihan CO2 /CH4 sebanyak 69.48 dan nilai kebolehtelapan CO2 ialah 206.1 GPU.

 

Kata kunci:  suhu karbonisasi, sokongan tubul, P84 kopolimid, membran karbon, pemisahan gas

 

References

1.       Favre, E. (2010). Polymeric membranes for gas separation, in comprehensive membrane science and engineering, E. Drioli and L. Giorno (Editors). Elsevier: Oxford: pp. 155 - 212.

2.       Lie, J. A. and Hägg, M.-B. (2006). Carbon membranes from cellulose: Synthesis, performance and regeneration. Journal of Membrane Science, 284: 79 - 86.

3.       Adewole, J. K., Ahmad, A. L., Ismail, S. and Leo, C. P. (2013). Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46 - 65.

4.       Md Nordin, N. A. H., Racha, S. M., Matsuura, T., Misdan, N., Sani, N. A. A., Ismail, A. F. and Mustafa, A. (2015). Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 5: 43110 - 43120.

5.       Salleh, W. N. W., Ismail, A. F., Matsuura, T. and Abdullah, M. S. (2011). Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Separation & Purification Reviews, 40: 261 - 311.

6.       Robeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62: 165 - 185.

7.       Reuse, E. (2016). Polymeric membranes for gas separation, in reference module in materials science and materials engineering. Elsevier.

8.       Gilron, J. and Soffer, A. (2002). Knudsen diffusion in microporous carbon membranes with molecular sieving character. Journal of Membrane Science, 209: 339 - 352.

9.       Sazali, N., Salleh, W. N. W., Nordin, M., Hadi, N. A., Harun, Z. and Ismail, A. F. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science, 132: 42394 - 42400.

10.    Saufi, S. M. and Ismail, A. F. (2004). Fabrication of carbon membranes for gas separation - A review. Carbon, 42: 241 - 259.

11.    Briceño, K., Montané, D., Garcia-Valls, R., Iulianelli, A. and Basile, A. (2012). Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation. Journal of Membrane Science, 415 – 416: 288 - 297.

12.    Kargari, A., Shamsabadi, A. A. and Babaheidari, M. B. (2014). Influence of coating conditions on the H2 separation performance from H2/CH4 gas mixtures by the PDMS/PEI composite membrane. International Journal of Hydrogen Energy, 39: 6588 - 6597.

13.    Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M. and Ismail, A. F. (2015) Matrimid-based carbon tubular membrane: Effect of carbonization environment. Journal of Industrial and Engineering Chemistry, 32: 167 - 171.

14.    Lua, A. C. and Shen, Y. (2013). Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. Journal of Membrane Science, 429: 155 - 167.

15.    Basu, A., Akhtar, J., Rahman, M. H. and Islam, M. R. (2004). A review of separation of gases using membrane systems. Petroleum Science and Technology, 22:1343 - 1368.

16.    Salleh, W. N. W. and Ismail, A. F. (2012). Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE Journal, 58: 3167 - 3175.

17.    Fuertes, A. B., Nevskaia, D. M. and Centeno, T. A. (1999). Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Microporous and Mesoporous Materials, 33: 115 - 125.

18.    Ismail, A. F. and David, L. I. B. (2001). A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 193: 1 - 18.

19.    Hosseini, S. S., Peng, N., and Chung, T. S. (2010). Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. Journal of Membrane Science, 349: 156 - 166.

20.    Barsema, J. N., Klijnstra, S. D., Balster, J. H., van der Vegt, N. F., Koops, G. H. and Wessling, M. (2004). Intermediate polymer to carbon gas separation membranes based on Matrimid PI. Journal of Membrane Science, 238: 93 - 102.

 

 




Previous                    Content                    Next