Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 402 - 408

DOI: https://doi.org/10.17576/mjas-2017-2102-15

 

 

 

THE EFFECT OF NOVEL MULTIWALLED CARBON NANOTUBE-TITANIA NANOTUBE HYBRID IN POLYAMIDE ACTIVE LAYER TOWARDS WATER PERMEABILITY AND HIGH SODIUM CHLORIDE REJECTION PERFORMANCE OF NANOFILTRATION MEMBRANE DESALINATION

 

(Kesan Hibrid Karbon Tiub Nano Pelbagai Dinding-Titania Tiub Nano Novel dalam Lapisan Aktif Poliamida Terhadap Prestasi Kebolehtelapan Air dan Penyingkiran Natrium Klorida yang Tinggi Bagi Membran Penapisan Nano Pengenyahmasin)

 

Ihsan Wan Azelee, Pei Sean Goh*, Woei Jye Lau, Ahmad Fauzi Ismail, Masood Rezaei Dasht Arzhandi,

Kar Chun Wong, Mahesan Naidu Subramaniam

 

Advanced Membrane Technology Research Centre (AMTEC),

 Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: peisean@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

In this study, thin film nanocomposite (TFN) membranes were prepared by incorporating multi-walled carbon nanotube-titania nanotube (MWCNT-TNT) hybrid into the polyamide layer via interfacial polymerization on the surface of PS35 commercial substrate. The study showed that in the neat thin film composite (TFC), the presence of PIP in polyamide layer increased the water permeability (from 0.54 to 2.25 L/m2 h bar) but decreased the NaCl rejection (from 86.48 to 47.45%). Interestingly, the presence of MWCNT-TNT in MPD-PIP polyamide layer increased the NaCl rejection by 38.68% (47.45 to 86.13%) while giving a significant water permeability performance at 0.86 L/m2 h bar. The incorporation of acid treated MWCNT-TNT has improved the water permeability from 0.86 to 0.89 L/m2 h bar while decreasing the NaCl rejection from 86.13 to 77.51%. Further investigation of MWCNT-TNT loading at pH 2 revealed that the increase of its loading in polyamide layer decreased both water permeability and NaCl rejection performance of the membrane. Overall, it can be concluded that the addition of an appropriate loading of surface modified MWCNT-TNT into the polyamide layer can remarkably improve the performance of conventional TFC membranes for desalination applications. In addition, incorporating PIP in the polyamide layer reduces the capability of the membrane on NaCl rejection.

 

Keywords:  water desalination, thin film nanocomposite membrane, MWCNT-TNT hybrid

 

Abstrak

Dalam kajian ini, filem nipis komposit nano (TFN) membran telah disediakan dengan menggabungkan karbon tiub nano pelbagai dinding-titania tiub nano (MWCNT-TNT) ke dalam lapisan poliamida melalui pempolimeran antara muka di permukaan substrat PS35 membran komersial. Kajian ini menunjukkan bahawa tanpa MWCNT-TNT, kehadiran PIP dalam lapisan poliamida meningkatkan kebolehtelapan air (daripada 0.54 kepada 2.25 L/m2 h bar) tetapi mengurangkan penyingkiran NaCl (daripada 86.48 kepada 47.45%). Menariknya, kehadiran MWCNT-TNT dalam lapisan poliamida MPD-PIP meningkatkan penyingkiran NaCl pada 38.68% (47.45 kepada 86.13%) sambil memberi prestasi kebolehtelapan air yang besar pada 0.86 L/m2 h bar. Penggabungan MWCNT-TNT ygng dirawat asid telah meningkat kebolehtelapan air dari 0.86 to 0.89 L/m2 h bar namun mengurangkan penyingkiran NaCl (daripada 86.13 kepada 77.51%). Siasatan lanjut terhadap muatan MWCNT-TNT pada pH 2 mendedahkan bahawa peningkatan muatannya dalam lapisan poliamida menurun kedua – dua prestasi membran terhadap kebolehtelapan air dan penyingkiran NaCl. Secara keseluruhan, dapat disimpulkan bahawa penambahan muatan dan pH yang sesuai bagi MWCNT-TNT ke dalam lapisan poliamida dapat meningkatkan lagi prestasi membran TFC konvensional untuk aplikasi pengenyahmasin. Di samping itu, menggabungkan PIP dalam lapisan poliamida mengurangkan keupayaan membran terhadap penyingkiran NaCl.

 

Kata kunci:  pengenyahmasin air, membran filem nipis komposit nano, hibrid MWCNT-TNT

 

References

1.       Wu, D., Yu, S., Lawless, D. and Feng, X. (2015). Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations. Reactive and Functional Polymers, 86: 168 – 1835.

2.       Lau, W. J., Ismail, A. F., Goh, P. S., Hilal, N. and Ooi, B. S. (2014). Characterization methods of thin film composite nanofiltration membranes. Separation and Purification Reviews, 44 (2): 135 – 156.

3.       Vatanpour, V., Esmaeili, M. and Farahani, M. H. D. A. (2014). Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. Journal of Membrane Science, 466: 70 – 81.

4.       Natarajan, T. S., Lee, J. Y., Bajaj, H. C., Jo, W.-K. and Tayade, R. J. (2016). Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catalysis Today, 282: 13 –  23.

5.       Mudunkotuwa, I. A. and Grassian, V. H. (2010). Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH : Surface coverage , surface speciation , and its impact on nanoparticle - nanoparticle interactions. Jounal of American Chemical Society, 132: 14986 – 14994.

6.       Lind, M. L., Suk, D. E., Nguyen, T. V. and Hoek, E. M. V. (2010). Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environmental Science and Technology, 44 (21): 8230 – 8235.

7.       Xie, W., Geise, G. M., Freeman, B. D., Lee, H. S., Byun, G. and McGrath, J. E. (2012). Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 403 – 404: 152 – 161.

8.       Liu, X., Yan, R., Zhang, J., Zhu, J. and Wong, D. K. Y. (2015). Evaluation of a carbon nanotube-titanate nanotube nanocomposite as an electrochemical biosensor scaffold. Biosensors and Bioelectronics, 66:  208 – 215.

9.       Saha, N. K. and Joshi, S. V. (2009). Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. Journal of Membrane Science, 342 (1–2): 60 – 69.

10.    Daer, S., Kharraz, J., Giwa, A. and Hasan, S. W. (2015). Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 367: 37 – 48.

11.    Zhang, L., Shi, G.-Z., Qiu, S., Cheng, L.-H. and Chen, H.-L. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalination and Water Treatment, 34(1–3): 19 – 24.

12.    Ma, N., Wei, J., Liao, R. and Tang, C. Y. (2012). Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. Journal of Membrane Science, 405 – 406: 149 – 157.

13.    Wan Azelee, I., Goh, P. S., Lau, W. J., Ng, B. C. and Ismail, A. F. (2016). Development of thin film nanocomposite embedded with graphene oxide for MgSO4 removal. Journal of Engineerning Science and Technology, 11(7): 974 – 986.

 

 




Previous                    Content                    Next