Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 402 - 408
DOI:
https://doi.org/10.17576/mjas-2017-2102-15
THE EFFECT OF NOVEL MULTIWALLED CARBON NANOTUBE-TITANIA
NANOTUBE HYBRID IN POLYAMIDE ACTIVE LAYER TOWARDS WATER PERMEABILITY AND HIGH
SODIUM CHLORIDE REJECTION PERFORMANCE OF NANOFILTRATION MEMBRANE DESALINATION
(Kesan Hibrid Karbon Tiub Nano Pelbagai
Dinding-Titania Tiub Nano Novel dalam Lapisan Aktif Poliamida Terhadap Prestasi
Kebolehtelapan Air dan Penyingkiran Natrium Klorida yang Tinggi Bagi Membran Penapisan
Nano Pengenyahmasin)
Ihsan Wan
Azelee, Pei Sean Goh*, Woei Jye Lau, Ahmad Fauzi Ismail, Masood Rezaei Dasht Arzhandi,
Kar Chun Wong,
Mahesan Naidu Subramaniam
Advanced
Membrane Technology Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 Skudai,
Johor, Malaysia
*Corresponding author: peisean@petroleum.utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
In this
study, thin film nanocomposite (TFN)
membranes were prepared by incorporating
multi-walled carbon nanotube-titania nanotube (MWCNT-TNT) hybrid into the
polyamide layer via interfacial polymerization on the surface of PS35 commercial substrate.
The study showed that in the neat thin film composite (TFC), the presence of
PIP in polyamide layer increased the water permeability (from 0.54 to 2.25 L/m2
h bar) but decreased the NaCl rejection (from 86.48 to 47.45%). Interestingly,
the presence of MWCNT-TNT in MPD-PIP polyamide layer increased the NaCl
rejection by 38.68% (47.45 to 86.13%) while giving a significant water
permeability performance at 0.86 L/m2 h bar. The incorporation of
acid treated MWCNT-TNT has improved the water permeability from 0.86 to 0.89
L/m2 h bar while decreasing the NaCl rejection from 86.13 to 77.51%.
Further investigation of MWCNT-TNT loading at pH 2 revealed that the increase
of its loading in polyamide layer decreased both water permeability and NaCl
rejection performance of the membrane. Overall, it can be concluded that the
addition of an appropriate loading of surface modified MWCNT-TNT into the
polyamide layer can remarkably improve the performance of conventional TFC
membranes for desalination applications. In addition, incorporating PIP in the
polyamide layer reduces the capability of
the membrane on NaCl rejection.
Keywords: water desalination, thin film nanocomposite
membrane, MWCNT-TNT
hybrid
Abstrak
Dalam kajian ini, filem nipis komposit nano (TFN) membran telah
disediakan dengan menggabungkan karbon tiub nano pelbagai dinding-titania tiub
nano (MWCNT-TNT) ke dalam lapisan poliamida melalui pempolimeran antara muka di
permukaan substrat PS35 membran komersial. Kajian ini menunjukkan bahawa tanpa
MWCNT-TNT, kehadiran PIP dalam lapisan poliamida meningkatkan kebolehtelapan
air (daripada 0.54 kepada 2.25 L/m2 h bar) tetapi mengurangkan penyingkiran NaCl (daripada 86.48 kepada 47.45%).
Menariknya, kehadiran MWCNT-TNT dalam lapisan poliamida MPD-PIP meningkatkan
penyingkiran NaCl pada 38.68% (47.45 kepada 86.13%) sambil memberi prestasi
kebolehtelapan air yang besar pada 0.86 L/m2 h bar. Penggabungan MWCNT-TNT ygng dirawat asid telah meningkat kebolehtelapan
air dari 0.86 to 0.89 L/m2 h bar namun mengurangkan penyingkiran
NaCl (daripada 86.13 kepada 77.51%). Siasatan lanjut terhadap muatan MWCNT-TNT pada
pH 2 mendedahkan bahawa peningkatan muatannya dalam lapisan poliamida menurun
kedua – dua prestasi membran terhadap kebolehtelapan air dan penyingkiran NaCl.
Secara keseluruhan, dapat disimpulkan bahawa penambahan muatan dan pH yang
sesuai bagi MWCNT-TNT ke dalam lapisan poliamida dapat meningkatkan lagi prestasi
membran TFC konvensional untuk aplikasi pengenyahmasin. Di samping itu,
menggabungkan PIP dalam lapisan poliamida mengurangkan keupayaan membran
terhadap penyingkiran NaCl.
Kata kunci: pengenyahmasin air, membran filem nipis komposit nano, hibrid MWCNT-TNT
References
1.
Wu, D., Yu, S., Lawless, D. and Feng, X. (2015). Thin
film composite nanofiltration membranes fabricated from polymeric amine
polyethylenimine imbedded with monomeric amine piperazine for enhanced salt
separations. Reactive and Functional Polymers, 86: 168 – 1835.
2.
Lau, W. J., Ismail, A. F., Goh, P. S., Hilal, N. and Ooi, B.
S. (2014). Characterization methods of thin film composite nanofiltration
membranes. Separation and Purification Reviews, 44 (2): 135 – 156.
3.
Vatanpour, V., Esmaeili, M. and Farahani, M. H. D. A. (2014).
Fouling reduction and retention increment of polyethersulfone nanofiltration
membranes embedded by amine-functionalized multi-walled carbon nanotubes. Journal
of Membrane Science, 466: 70 – 81.
4.
Natarajan, T. S., Lee, J. Y., Bajaj, H. C., Jo, W.-K. and
Tayade, R. J. (2016). Synthesis of multiwall carbon nanotubes/TiO2
nanotube composites with enhanced photocatalytic decomposition efficiency. Catalysis
Today, 282: 13 – 23.
5.
Mudunkotuwa, I. A. and Grassian, V. H. (2010). Citric acid
adsorption on TiO2 nanoparticles in aqueous suspensions at acidic
and circumneutral pH : Surface coverage , surface speciation , and its impact
on nanoparticle - nanoparticle interactions. Jounal of American Chemical
Society, 132: 14986 – 14994.
6.
Lind, M. L., Suk, D. E., Nguyen, T. V. and Hoek, E. M. V.
(2010). Tailoring the structure of thin film nanocomposite membranes to achieve
seawater RO membrane performance. Environmental Science and Technology, 44
(21): 8230 – 8235.
7.
Xie, W., Geise, G. M., Freeman, B. D., Lee, H. S., Byun, G.
and McGrath, J. E. (2012). Polyamide interfacial composite membranes prepared
from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal
of Membrane Science, 403 – 404: 152 – 161.
8.
Liu, X., Yan, R., Zhang, J., Zhu, J. and Wong, D. K. Y.
(2015). Evaluation of a carbon nanotube-titanate nanotube nanocomposite as an
electrochemical biosensor scaffold. Biosensors and Bioelectronics, 66: 208 – 215.
9.
Saha, N. K. and Joshi, S. V. (2009). Performance evaluation
of thin film composite polyamide nanofiltration membrane with variation in
monomer type. Journal of Membrane Science, 342 (1–2): 60 – 69.
10. Daer, S., Kharraz, J., Giwa, A. and Hasan, S. W. (2015). Recent
applications of nanomaterials in water desalination: A critical review and
future opportunities. Desalination, 367: 37 – 48.
11. Zhang, L., Shi, G.-Z., Qiu, S., Cheng, L.-H. and Chen, H.-L. (2011).
Preparation of high-flux thin film nanocomposite reverse osmosis membranes by
incorporating functionalized multi-walled carbon nanotubes. Desalination and
Water Treatment, 34(1–3): 19 – 24.
12. Ma, N., Wei, J., Liao, R. and Tang, C. Y. (2012). Zeolite-polyamide thin
film nanocomposite membranes: Towards enhanced performance for forward osmosis.
Journal of Membrane Science, 405 – 406: 149 – 157.
13. Wan Azelee, I., Goh, P. S., Lau, W. J., Ng, B. C. and Ismail, A. F.
(2016). Development of thin film nanocomposite embedded with graphene oxide for
MgSO4 removal. Journal of Engineerning Science and Technology,
11(7): 974 – 986.