Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 435 - 444

DOI: https://doi.org/10.17576/mjas-2017-2102-19

 

 

 

METHANOL PERMEABILITY AND PROPERTIES OF POLYMER ELECTROLYTE MEMBRANE BASED ON GRAPHENE OXIDE- SULFONATED (POLYETHER ETHER) KETONE

 

(Kebolehtelapan Metanol dan Sifat-Sifat Membran Polimer Elektrolit Berasaskan Grafin Oksida-Polieter Eter Keton Tersulfon)

 

Nuor Sariyan Suhaimin1, Madzlan Aziz1,2*, Juhana Jaafar2

 

1Chemistry Department, Faculty of Science

 2Advanced Membrane Technology Research Centre

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: madzlan@utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Graphene oxide sulfonated polyether ether ketone (GO-SPEEK) is a promising proton exchange membrane (PEM) to replace the commercial PEM in Direct Methanol Fuel Cell (DMFC) application. The GO films were prepared from natural graphite flakes by the modified Hummer’s Method. The structure and physicochemical characterization techniques were applied to impart insight into the specific structure, element composition as well as the functional groups by using Attenuated Total Reflection infrared spectroscopy (ATR), X-Ray diffraction (XRD), and Raman Spectroscopy. The incorporation of graphene oxide in SPEEK not only improved membrane behaviors of PEM in terms of ion exchange capacity (1.231 mequiv.g-1), water uptake (53.45%) and proton conductivity (0.0537), but also positively blocking of methanol molecules passing through membrane, thus making them appealing as proton exchange membranes (PEMs).

 

Keywords:  graphene oxide, sulfonated polyether ether ketone, proton exchange membrane, X-ray diffraction

 

Abstrak

Grafin oksida sulfona polieter eter keton (GO-SPEEK) merupakan proton pertukaran membran (PEM) yang menjanjikan  pengantian PEM komersial dalam aplikasi sel bahan api metanol langsung (DMFC). Filem GO dihasilkan daripada grafit semulajadi menggunakan kaedah Hummer diubahsuai. Teknik – teknik pencirian struktur fizikal dan kimia telah digunakan untuk mendapatkan maklumat tentang struktur spesifik, komposisi elemen dan juga kumpulan berfungsi dengan menggunakan ATR spektroskopi inframerah, pembelauan sinar-X (XRD), dan spektroskopi Raman. Penambahan grafin oksida kedalam sulfona poli (eter eter keton) bukan sahaja meningkatkan prestasi PEM dari aspek kapasiti pertukaran ion (1.231 mequiv.g-1), pengambilan air (53.45%) dan kekonduksian proton (0.0537), tetapi juga mampu untuk menahan molekul metanol dari merentasi membran, sekaligus menjadikannya sangat sesuai sebagai PEM.

 

Kata kunci:  grafin oksida, polieter eter keton tersulfon, proton pertukaran membran, pembelauan sinar-X

 

References

1.       Sharaf, O. Z. and Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32 (1): 810 – 853.

2.       Lucia, U. (2014). Overview on fuel cells. Renewable and Sustainable Energy Reviews, 30(1): 164 –169.

3.       Norddin, M. N. A. M., Ismail, A. F., Rana, D., Matsuura, T., Mustafa, A. and Tabe-Mohammadi, A. (2008). Characterization and performance of proton exchange membranes for direct methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with charged surface modifying macromolecule. Journal of Membrane Science, 323(2): 404 – 413.

4.       Tripathi, B. P. and Shahi, V. K. (2011). Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science (Oxford), 36(7): 945 – 979.

5.       Jaafar, J., Ismail, A. F. and Matsuura, T. (2009). Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. Journal of Membrane Science, 345 (1-2): 119 – 127.

6.       Chakraborty, S., Guo, W. H., Hauge, R. H. and Billups, W. E. (2008). Reductive alkylation of muorinated graphite. Chemistry of Materials, 20(9): 3134 – 3136.

7.       Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80 (6):1339 – 1339.

8.       Jaafar, J., Ismail, A. F. and Matsuura, T. (2012). Effect of dispersion state of Cloisite15A on the performance of SPEEK/Cloisite15A nanocomposite membrane for DMFC application. Journal of Applied Polymer Science, 124 (2): 969 – 977.

9.       Park, C. H., Lee, C. H., Guiver, M. D. and Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science (Oxford), 36 (11): 1443 – 1498.

10.    Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A. and Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1): 36 – 41.

11.    Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M. and Mauri F. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (18): 74 – 81.

12.    Childres, I., Jauregui, L., Park, W., Cao, H. and Chen, Y. (2013). Raman spectroscopy of graphene and related materials. New Developments in Photon and Materials Research, 16 (2): 1 – 20.

13.    Tuinstra, F. and Koenig, L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53 (1): 1126 – 1130.

14.    Ferrari, A.C. and Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4): 235 – 246.

15.    Mecheri, B., D’Epifanio, A., Traversa, E. and Licoccia S. (2008). Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. Journal of Power Sources, 178(2): 554 – 560.

16.    Krishnan, P., Park, J. S. and Kim, C. S. (2006). Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process. Journal of Membrane Science, 279 (6): 220 – 229.

17.    Fu, T., Cui, Z., Zhong, S., Shi, Y., Zhao, C. and Zhang, G. (2008). Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. Journal of Power Sources, 185(5): 32 – 39.

18.    Hasani-sadrabadi, M. M., Emami, S. H. and Ghaffarian, R. (2008). Nanocomposite membranes made from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel cell applications. Energy & Fuels, 22(4): 2539 – 2542.

19.    Peighambardoust, S. J., Rowshanzamir, S. and Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17): 9349 – 9384.

20.    Barbir, F. (2006). PEM fuel cells. Fuel Cell Technology, 2(1): 27 – 51.

21.    Eisenberg A. (1970). Clustering of ions in organic polymers. A theoretical approach. Mucromolecules, 3(2): 147 – 154.

22.    He, Y., Tong, C., Geng, L. and Liu, L. (2014). Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide. Journal of Membrane Science, 458(2): 36 – 46.

23.    Jiang, Z., Zhao, X. and Manthiram, A. (2013). Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. International Journal of Hydrogen Energy, 38 (14): 5875 – 5884.

24.    Li, L., Zhang, J. and Wang Y. (2003). Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. Journal of Membrane Science, 226(3): 159 – 167.

25.    Li, X., Liu, C., Lu, H., Zhao, C., Wang, Z. and Xing, W. (2005). Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application. Journal of Membrane Science, 255(1-2):149 – 155.

26.    Heo, Y., Im, H. and Kim, J. (2013). The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425(1): 11 – 22.

 

 




Previous                    Content                    Next