Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 435 - 444
DOI:
https://doi.org/10.17576/mjas-2017-2102-19
METHANOL
PERMEABILITY AND PROPERTIES OF POLYMER ELECTROLYTE MEMBRANE BASED ON GRAPHENE
OXIDE- SULFONATED (POLYETHER ETHER) KETONE
(Kebolehtelapan
Metanol dan Sifat-Sifat Membran Polimer Elektrolit Berasaskan Grafin
Oksida-Polieter Eter Keton Tersulfon)
Nuor Sariyan
Suhaimin1, Madzlan Aziz1,2*, Juhana Jaafar2
1Chemistry Department, Faculty of Science
2Advanced Membrane Technology
Research Centre
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: madzlan@utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
Graphene oxide sulfonated polyether
ether ketone (GO-SPEEK) is a promising proton exchange membrane (PEM) to
replace the commercial PEM in Direct Methanol Fuel Cell (DMFC) application. The
GO films were prepared from natural graphite flakes by the modified Hummer’s
Method. The structure and physicochemical characterization techniques were
applied to impart insight into the specific structure, element composition as
well as the functional groups by using Attenuated Total Reflection infrared spectroscopy
(ATR), X-Ray diffraction (XRD), and Raman Spectroscopy. The incorporation of
graphene oxide in SPEEK not only improved membrane behaviors of PEM in terms of
ion exchange capacity (1.231 mequiv.g-1), water uptake (53.45%) and
proton conductivity (0.0537), but also positively blocking of methanol
molecules passing through membrane, thus making them appealing as proton
exchange membranes (PEMs).
Keywords: graphene oxide,
sulfonated polyether ether ketone, proton exchange membrane, X-ray diffraction
Abstrak
Grafin
oksida sulfona polieter eter keton (GO-SPEEK) merupakan proton pertukaran
membran (PEM) yang menjanjikan
pengantian PEM komersial dalam aplikasi sel bahan api metanol langsung
(DMFC). Filem GO dihasilkan daripada grafit semulajadi menggunakan kaedah
Hummer diubahsuai. Teknik – teknik pencirian struktur fizikal dan kimia telah
digunakan untuk mendapatkan maklumat tentang struktur spesifik, komposisi
elemen dan juga kumpulan berfungsi dengan menggunakan ATR spektroskopi
inframerah, pembelauan sinar-X (XRD), dan spektroskopi Raman. Penambahan grafin
oksida kedalam sulfona poli (eter eter keton) bukan sahaja meningkatkan
prestasi PEM dari aspek kapasiti pertukaran ion (1.231 mequiv.g-1),
pengambilan air (53.45%) dan kekonduksian proton (0.0537), tetapi juga mampu
untuk menahan molekul metanol dari merentasi membran, sekaligus menjadikannya
sangat sesuai sebagai PEM.
Kata kunci: grafin oksida, polieter eter keton tersulfon, proton
pertukaran membran, pembelauan sinar-X
References
1. Sharaf, O. Z. and
Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and
applications. Renewable and Sustainable
Energy Reviews, 32 (1): 810 – 853.
2. Lucia, U. (2014).
Overview on fuel cells. Renewable and
Sustainable Energy Reviews, 30(1): 164 –169.
3. Norddin, M. N. A.
M., Ismail, A. F., Rana, D., Matsuura, T., Mustafa, A. and Tabe-Mohammadi, A. (2008).
Characterization and performance of proton exchange membranes for direct
methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with
charged surface modifying macromolecule. Journal
of Membrane Science, 323(2): 404 – 413.
4. Tripathi, B. P.
and Shahi, V. K. (2011). Organic–inorganic nanocomposite polymer electrolyte
membranes for fuel cell applications. Progress
in Polymer Science (Oxford), 36(7): 945 – 979.
5. Jaafar, J., Ismail,
A. F. and Matsuura, T. (2009). Preparation and barrier properties of
SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. Journal of Membrane Science, 345 (1-2): 119
– 127.
6. Chakraborty, S.,
Guo, W. H., Hauge, R. H. and Billups, W. E. (2008). Reductive alkylation of
muorinated graphite. Chemistry of
Materials, 20(9): 3134 – 3136.
7. Hummers, W. S.
and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80 (6):1339 – 1339.
8. Jaafar, J.,
Ismail, A. F. and Matsuura, T. (2012). Effect of dispersion state of
Cloisite15A on the performance of SPEEK/Cloisite15A nanocomposite membrane for
DMFC application. Journal of Applied
Polymer Science, 124 (2): 969 – 977.
9. Park, C. H., Lee,
C. H., Guiver, M. D. and Lee, Y. M. (2011). Sulfonated hydrocarbon membranes
for medium-temperature and low-humidity proton exchange membrane fuel cells
(PEMFCs). Progress in Polymer Science
(Oxford), 36 (11): 1443 – 1498.
10. Kudin, K. N.,
Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A. and Car, R. (2008).
Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1): 36 – 41.
11. Ferrari, A. C.,
Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M. and Mauri F. (2006). Raman
spectrum of graphene and graphene layers. Physical
Review Letters, 97 (18): 74 – 81.
12. Childres, I.,
Jauregui, L., Park, W., Cao, H. and Chen, Y. (2013). Raman spectroscopy of
graphene and related materials. New
Developments in Photon and Materials Research, 16 (2): 1 – 20.
13. Tuinstra, F. and
Koenig, L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53 (1): 1126 – 1130.
14. Ferrari, A.C.
and Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying
the properties of graphene. Nature Nanotechnology,
8(4): 235 – 246.
15. Mecheri, B.,
D’Epifanio, A., Traversa, E. and Licoccia S. (2008). Sulfonated polyether ether
ketone and hydrated tin oxide proton conducting composites for direct methanol
fuel cell applications. Journal of Power
Sources, 178(2): 554 – 560.
16. Krishnan, P.,
Park, J. S. and Kim, C. S. (2006). Preparation of proton-conducting sulfonated
poly(ether ether ketone)/boron phosphate composite membranes by an in situ
sol-gel process. Journal of Membrane
Science, 279 (6): 220 – 229.
17. Fu, T., Cui, Z.,
Zhong, S., Shi, Y., Zhao, C. and Zhang, G. (2008). Sulfonated poly(ether ether
ketone)/clay-SO3H hybrid proton exchange membranes for direct
methanol fuel cells. Journal of Power
Sources, 185(5): 32 – 39.
18. Hasani-sadrabadi,
M. M., Emami, S. H. and Ghaffarian, R. (2008). Nanocomposite membranes made
from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel
cell applications. Energy & Fuels,
22(4): 2539 – 2542.
19. Peighambardoust,
S. J., Rowshanzamir, S. and Amjadi, M. (2010). Review of the proton exchange
membranes for fuel cell applications. International
Journal of Hydrogen Energy, 35(17): 9349 – 9384.
20. Barbir, F. (2006).
PEM fuel cells. Fuel Cell Technology,
2(1): 27 – 51.
21. Eisenberg A. (1970).
Clustering of ions in organic polymers. A theoretical approach. Mucromolecules, 3(2): 147 – 154.
22. He, Y., Tong, C.,
Geng, L. and Liu, L. (2014). Enhanced performance of the sulfonated polyimide
proton exchange membranes by graphene oxide: Size effect of graphene oxide. Journal of Membrane Science, 458(2): 36
– 46.
23. Jiang, Z., Zhao,
X. and Manthiram, A. (2013). Sulfonated poly(ether ether ketone) membranes with
sulfonated graphene oxide fillers for direct methanol fuel cells. International Journal of Hydrogen Energy,
38 (14): 5875 – 5884.
24. Li, L., Zhang, J.
and Wang Y. (2003). Sulfonated poly(ether ether ketone) membranes for direct
methanol fuel cell. Journal of Membrane
Science, 226(3): 159 – 167.
25. Li, X., Liu, C.,
Lu, H., Zhao, C., Wang, Z. and Xing, W. (2005). Preparation and
characterization of sulfonated poly(ether ether ketone ketone) proton exchange
membranes for fuel cell application. Journal
of Membrane Science, 255(1-2):149 – 155.
26. Heo, Y., Im, H.
and Kim, J. (2013). The effect of sulfonated graphene oxide on sulfonated poly
(ether ether ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425(1): 11 –
22.