Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 460 - 469

DOI: https://doi.org/10.17576/mjas-2017-2102-22

 

 

 

ISOLATION, PURIFICATION AND IDENTIFICATION OF MICROALGAE FROM COAL-FIRED POWER PLANT ENVIRONMENT

 

(Pemencilan, Penulenan dan Identifikasi Mikroalga daripada Persekitaran Loji Janakuasa Arang Batu)

 

Muhammad Nazry Chik1, Liyana Yahya1, Kamrul Fakir Kamarudin2, Ding Gong Tao2, Mohd Sobri Takriff2*

 

1Emission and Waste Management Technology Group,

TNB Research Sdn Bhd, No 1, Lorong Air Hitam, Kawasan Institusi Penyelidikan, 43000 Kajang, Selangor, Malaysia

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: sobritakriff@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Carbon capture and storage (CCS) through biological approach has attracted much attention as global warming and climate change issue becomes a worldwide agenda. Energy production industry from coal in Malaysia produced 50.661 million metric tons of carbon dioxide in 2012, and the trend showed it will keep increasing year by year. CCS through biological approach can be done by microalgae which are versatile microorganism which perform photosynthesis process that can store CO2 in the biomass form. In this study, microalgae strains were isolated from the native environment nearby a coal-fired power plant, where samples were collected in different canal in which pre-treated flue gases are discharged. The microalgae strains were identified by both morphological and molecular approaches. Result from 18s rRNA gene sequencing showed that the isolated strains is Chlorella sp. with similarity 99% with Chlorella sp. SAG 211-18. The identified strains of microalgae then cultivated with three concentration of CO2 (ambient air, 1% and 5%) and the growth rate showed 0.4017 day-1, 0.5752 day-1 and 0.4427 day-1 respectively. Different concentration of CO2 (ambient air, 1% and 5%) showed that the isolated strains yielded 1.005gL-1, 1.101gL-1 and 1.035gL-1 respectively. This study also showed that with different concentration of CO2, the sequestration rate is ranging from 1% to 4.3%.

 

Keywords:  microalgae, isolation, purification, DNA sequencing

 

Abstrak

Pemerangkapan dan penyimpanan karbon (CCS) melalui pendekatan biologi telah menarik minat pengkaji disebabkan masalah pemanasan dan perubahan iklim global. Pada tahun 2012 sahaja, Malaysia telah menghasilkan 50.661 juta ton metrik karbon dioksida hasil daripada penghasilan tenaga yang bersumberkan arang batu, dan tahun demi tahun penghasilan karbon dioksida dijangkakan akan terus meningkat. Pemerangkapan dan penyimpanan karbon melalui pendekatan biologi boleh dilakukan oleh mikroalga yang merupakan mikroorganisma unggul di mana ianya berupaya menjalankan proses fotosintesis dalam menukarkan karbon dioksida ke dalam bentuk biojisim. Dalam kajian ini, mikroalga dipencilkan daripada habitat asal yang merupakan terusan bagi air penyejuk untuk stesen janakuasa arang batu. Mikroalga yang diperoleh, dikenalpasti menggunakan kaedah pengecaman secara morfologi dan molekul. Hasil keputusan pengenal pastian molekul menggunakan kaedah penjujukan genom 18s rRNA mendapati, mikroalga yang berjaya dipencilkan adalah Chlorella sp. yang mempunyai persamaan sehingga 99% dengan Chlorella sp. SAG 211-18. Mikroalga yang telah menjalani proses identifikasi kemudiannya dikultur menggunakan 3 kepekatan karbon dioksida yang berbeza (CO2 pada udara persekitaran, CO2 1% dan CO2 5%) dan hasil menunjukkan kadar pertumbuhan masing-masing adalah 0.4017 hari-1, 0.5752 hari-1, dan 0.4427 hari-1. Pada kepekatan CO2 yang berbeza (CO2 pada udara persekitaran, CO2 1% dan CO2 5%), hasil biojisim yang terkumpul daripada pengkulturan mikroalga masing-masing adalah 1.005gL-1, 1.101gL-1 dan 1.035gL-1. Kajian juga menunjukkan pada kepekatan CO2 yang berbeza, kadar pemerangkapan karbon dioksida adalah pada kadar 1% sehingga 4.3%.

 

Kata kunci:  mikroalga, pemencilan, penulenan, penjujukan DNA

 

References

1.       Certik, M. and Shimizu S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of Bioscience and Bioengineering, 87(1): 1 - 14.

2.       Hama, S. and Kondo, A. (2012). Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresource Technology, 135: 386 - 395.

3.       Fujii, K. (2012). Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga. Food Bioproducts Processing, 90(4): 762 - 766.

4.       Kao, C.Y., Chiu, S. Y., Huang, T. T., Dai, L., Wang, G. H, Tseng, C. P., Chen, C. H. and Lin, C. S. (2012).  A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass and Bioenergy, 36: 132 - 140.

5.       Liang, Y., Sarkany, N. and Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7): 1043 -1049.

6.       Perez-Garcia O, Escalante F. M. E., De-Bashan L. E. and Bashan Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45: 11 - 36.

7.       EL-Sheekh, M. M., Bedaiwy, M. Y., Osman M. E. and Ismail, M. M. (2012). Mixotrophic and heterotrophic growth of some microalgae using extract of fungal-treated wheat bran. International Journal of Recycling Organic Waste in Agriculture, 1(1): 1 - 9.

8.       Wensel, P., Helms, G., Hiscox, B., Bavis, W. C., Kirchoff, H., Bule, M., Yu, L. and Chen S. (2014). Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Research, 4: 2 - 11.

9.       Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G. and Simões M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5): 3043 - 3053.

10.    Radmann, E. M., Camerini, F. V., Santos, T. D. and Costa, J. A. V. (2011). Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Conversion Management, 52(10): 3132 - 3136.

11.    de Morais M. G. and Costa J. A. V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion Management, 48(7): 2169 - 2173.

12.    Malaysia Energy Information Hub (2013). Primary Energy Supply (Ktoe). Putrajaya, Malaysia.

13.    CO2now.org. Earth’s CO2 home page. Access from http://co2now.org/.

14.    Tans P., Keeling R. (2015). Global Greenhouse Gas Reference Network. Mauna Loa http://www.esrl.noaa.gov/ gmd/ccgg/trends/. Accessed online [July 13, 2015].

15.    Alstom S. A. (2013). Case Study: Steam Product Solutions. Manjung Unit 4 - Malaysia. Ultra-Supercritical Coal-Fired Power Plant. Baden, Switzerland.

16.    Jansson, C. and Northen, T. (2010). Calcifying cyanobacteria — the potential of biomineralization for carbon capture and storage. Current Opinion Biotechnology, 21(3): 365 - 371.

17.    Skjånes, K., Lindblad, P. and Muller J. (2007). BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering, 24(4): 405 - 413.

18.    Ramanan, R., Kannan, K., Deshkar, A., Yadav, R. and Chakrabarti T. (2010). Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology, 101(8): 2616 - 2622.

19.    Zhao, L., Chen, Y. and Schaffner, D. W. (2001). Comparison of logistic regression and linear regression in modeling percentage data. Applied and Environmental Microbiology, 67(5): 2129 - 2135.

20.    Kargi, F. (2009). Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Letters in Applied Microbiology, 48(4): 398 - 401.

21.    Xu, Y. and Boeing, W. J. (2014). Modeling maximum lipid productivity of microalgae: Review and next step. Renewable and Sustainable Energy Reviews, 32: 29 - 39.

22.    Promega (2010). Wizard Genomic DNA Purification Kit Quick Protocol, FB022. 2010: 1123 - 1126.

23.    Simon, N., Campbell, L., Ornolfsdottir, E., Groben, R., Guillou, L., Lange, M. and Medlin, L. K. (2000). Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. Journal of Eukaryotic Microbiology, 47(1):76 - 84.

24.    Krienitz, L., Ustinova, I., Friedl, T. and Huss V. A. R. (2001). Traditional generic concepts versus 18S rRNA gene phylogeny in the green algal family Selenastraceae (Chlorophyceae, Chlorophyta). Journal of Phycology, 37(5): 852 - 865.

25.    Heischkamp, E., Varlik, M., Korkmaz, Ö., Oeljeklaus, G. and Görner K. (2011). Analysis of operating conditions of a flue gas scrubbing process for CO2 separation in a coal-fired power plant. Energy Procedia, 4:1377 - 1384.

26.    Ma, S., Chen, G., Guo, M., Zhao, L., Han, T., Zhu, S. (2014). Path analysis on CO2 resource utilization based on carbon capture using ammonia method in coal-fired power Plants. Renewable and Sustainable Energy Reviews, 37: 687 - 697.

27.    Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H. and Chen,  H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193: 68 - 75.

28.    Gerken, H. G., Donohoe, B. Knoshaug, E. P. (2013). Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, 237(1): 239 - 253.

29.    Nurachman, Z., Hartini, H., Rahmaniyah, W. R., Kurnia, D., Hidayat, R., Prijamboedi, B., Suendo, V., Ratnaningsih, E., Panggabean, L. M. G. and Nurbaiti, S. (2015). Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Research, 10: 25 - 32.

30.    Mathimani, T., Uma, L. and Prabaharan D. (2015). Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization. Renewable Energy, 81: 523 - 533.

31.    Imase, M., Watanabe, K., Aoyagi, H. and Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3): 273 - 282.

32.    Borkenstein, C. G., Knoblechner, J., Frühwirth, H. and Schagerl M. (2011). Cultivation of Chlorella emersonii with flue gas derived from a cement plant. Journal of Applied Phycology, 23(1): 131 - 135.




Previous                    Content                    Next