Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 460 - 469
DOI:
https://doi.org/10.17576/mjas-2017-2102-22
ISOLATION,
PURIFICATION AND IDENTIFICATION OF MICROALGAE FROM COAL-FIRED POWER PLANT
ENVIRONMENT
(Pemencilan,
Penulenan dan Identifikasi Mikroalga daripada Persekitaran Loji Janakuasa Arang
Batu)
Muhammad Nazry
Chik1, Liyana Yahya1, Kamrul Fakir Kamarudin2,
Ding Gong Tao2, Mohd Sobri Takriff2*
1Emission and Waste Management Technology Group,
TNB
Research Sdn Bhd, No 1, Lorong Air Hitam, Kawasan Institusi Penyelidikan, 43000
Kajang, Selangor, Malaysia
2Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: sobritakriff@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Carbon capture
and storage (CCS) through biological approach has attracted much attention as
global warming and climate change issue becomes a worldwide agenda. Energy
production industry from coal in Malaysia produced 50.661 million metric tons of
carbon dioxide in 2012, and the trend showed it will keep increasing year by
year. CCS through biological approach can be done by microalgae which are
versatile microorganism which perform photosynthesis process that can store CO2
in the biomass form. In this study, microalgae strains were isolated from the
native environment nearby a coal-fired power plant, where samples were
collected in different canal in which pre-treated flue gases are discharged.
The microalgae strains were identified by both morphological and molecular
approaches. Result from 18s rRNA gene sequencing showed that the isolated
strains is Chlorella sp. with
similarity 99% with Chlorella sp. SAG
211-18. The identified strains of microalgae then cultivated with three
concentration of CO2 (ambient air, 1% and 5%) and the growth rate
showed 0.4017 day-1, 0.5752 day-1 and 0.4427 day-1
respectively. Different concentration of CO2 (ambient air, 1% and
5%) showed that the isolated strains yielded 1.005gL-1, 1.101gL-1
and 1.035gL-1 respectively. This study also showed that with
different concentration of CO2, the sequestration rate is ranging
from 1% to 4.3%.
Keywords: microalgae, isolation, purification, DNA
sequencing
Abstrak
Pemerangkapan dan penyimpanan karbon (CCS) melalui pendekatan biologi
telah menarik minat pengkaji disebabkan masalah pemanasan dan perubahan iklim
global. Pada tahun 2012 sahaja, Malaysia telah menghasilkan 50.661 juta ton
metrik karbon dioksida hasil daripada penghasilan tenaga yang bersumberkan
arang batu, dan tahun demi tahun penghasilan karbon dioksida dijangkakan akan
terus meningkat. Pemerangkapan dan penyimpanan karbon melalui pendekatan
biologi boleh dilakukan oleh mikroalga yang merupakan mikroorganisma unggul di
mana ianya berupaya menjalankan proses fotosintesis dalam menukarkan karbon
dioksida ke dalam bentuk biojisim. Dalam kajian ini, mikroalga dipencilkan
daripada habitat asal yang merupakan terusan bagi air penyejuk untuk stesen
janakuasa arang batu. Mikroalga yang diperoleh, dikenalpasti menggunakan kaedah
pengecaman secara morfologi dan molekul. Hasil keputusan pengenal pastian
molekul menggunakan kaedah penjujukan genom 18s rRNA mendapati, mikroalga yang
berjaya dipencilkan adalah Chlorella
sp. yang mempunyai persamaan sehingga 99% dengan Chlorella sp. SAG 211-18. Mikroalga yang telah menjalani proses
identifikasi kemudiannya dikultur menggunakan 3 kepekatan karbon dioksida yang
berbeza (CO2 pada udara persekitaran, CO2 1% dan CO2
5%) dan hasil menunjukkan kadar pertumbuhan masing-masing adalah 0.4017 hari-1,
0.5752 hari-1, dan 0.4427 hari-1. Pada kepekatan CO2
yang berbeza (CO2 pada udara persekitaran, CO2 1% dan CO2
5%), hasil biojisim yang terkumpul daripada pengkulturan mikroalga
masing-masing adalah 1.005gL-1,
1.101gL-1 dan 1.035gL-1. Kajian
juga menunjukkan pada kepekatan CO2 yang berbeza, kadar
pemerangkapan karbon dioksida adalah pada kadar 1% sehingga 4.3%.
Kata kunci: mikroalga, pemencilan, penulenan, penjujukan DNA
References
1.
Certik, M. and Shimizu S. (1999). Biosynthesis and
regulation of microbial polyunsaturated fatty acid production. Journal of
Bioscience and Bioengineering, 87(1): 1 - 14.
2.
Hama, S. and Kondo, A. (2012). Enzymatic biodiesel
production: An overview of potential feedstocks and process development. Bioresource
Technology, 135: 386 - 395.
3.
Fujii, K. (2012). Process integration of supercritical carbon
dioxide extraction and acid treatment for astaxanthin extraction from a
vegetative microalga. Food Bioproducts Processing, 90(4): 762 - 766.
4.
Kao, C.Y., Chiu, S. Y., Huang, T. T., Dai, L., Wang, G. H,
Tseng, C. P., Chen, C. H. and Lin, C. S. (2012). A mutant strain of microalga Chlorella sp. for
the carbon dioxide capture from biogas. Biomass and Bioenergy, 36: 132 -
140.
5.
Liang, Y., Sarkany, N. and Cui, Y. (2009). Biomass and lipid
productivities of Chlorella vulgaris under autotrophic, heterotrophic and
mixotrophic growth conditions. Biotechnology Letters, 31(7): 1043 -1049.
6.
Perez-Garcia O, Escalante F. M. E., De-Bashan L. E. and Bashan
Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential
products. Water Research, 45: 11
- 36.
7.
EL-Sheekh, M. M., Bedaiwy, M. Y., Osman M. E. and Ismail, M. M.
(2012). Mixotrophic and heterotrophic growth of some microalgae using extract
of fungal-treated wheat bran. International Journal of Recycling Organic
Waste in Agriculture, 1(1): 1 - 9.
8.
Wensel, P., Helms, G., Hiscox, B., Bavis, W. C., Kirchoff,
H., Bule, M., Yu, L. and Chen S. (2014). Isolation, characterization, and
validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae
for two-stage cultivation. Algal Research, 4: 2 - 11.
9.
Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G. and Simões
M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering
aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5): 3043 - 3053.
10. Radmann, E. M., Camerini, F. V., Santos, T. D. and Costa, J. A. V. (2011).
Isolation and application of SOX and NOX resistant
microalgae in biofixation of CO2 from thermoelectricity plants. Energy
Conversion Management, 52(10): 3132 - 3136.
11. de Morais M. G. and Costa J. A. V. (2007). Isolation and selection of
microalgae from coal fired thermoelectric power plant for biofixation of carbon
dioxide. Energy Conversion Management,
48(7): 2169 - 2173.
12. Malaysia Energy Information Hub (2013). Primary Energy Supply (Ktoe). Putrajaya, Malaysia.
13. CO2now.org. Earth’s CO2 home page. Access from http://co2now.org/.
14. Tans P., Keeling R. (2015). Global
Greenhouse Gas Reference Network. Mauna Loa http://www.esrl.noaa.gov/ gmd/ccgg/trends/.
Accessed online [July 13, 2015].
15. Alstom S. A. (2013). Case Study:
Steam Product Solutions. Manjung Unit 4 - Malaysia. Ultra-Supercritical
Coal-Fired Power Plant. Baden, Switzerland.
16. Jansson, C. and Northen, T. (2010). Calcifying cyanobacteria — the
potential of biomineralization for carbon capture and storage. Current Opinion
Biotechnology, 21(3): 365 - 371.
17. Skjånes, K., Lindblad, P. and Muller J. (2007). BioCO2 - a
multidisciplinary, biological approach using solar energy to capture CO2
while producing H2 and high value products. Biomolecular
Engineering, 24(4): 405 - 413.
18. Ramanan, R., Kannan, K., Deshkar, A., Yadav, R. and Chakrabarti T. (2010).
Enhanced algal CO(2) sequestration through calcite deposition by
Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource
Technology, 101(8): 2616 - 2622.
19. Zhao, L., Chen, Y. and Schaffner, D. W. (2001). Comparison of logistic
regression and linear regression in modeling percentage data. Applied and Environmental
Microbiology, 67(5): 2129 - 2135.
20. Kargi, F. (2009). Re-interpretation of the logistic equation for batch
microbial growth in relation to Monod kinetics. Letters in Applied
Microbiology, 48(4): 398 - 401.
21. Xu, Y. and Boeing, W. J. (2014). Modeling maximum lipid productivity of
microalgae: Review and next step. Renewable and Sustainable Energy Reviews,
32: 29 - 39.
22. Promega (2010). Wizard Genomic
DNA Purification Kit Quick Protocol, FB022. 2010: 1123 - 1126.
23. Simon, N., Campbell, L., Ornolfsdottir, E., Groben, R., Guillou, L., Lange,
M. and Medlin, L. K. (2000). Oligonucleotide probes for the identification of
three algal groups by dot blot and fluorescent whole-cell hybridization. Journal
of Eukaryotic Microbiology, 47(1):76 - 84.
24. Krienitz, L., Ustinova, I., Friedl, T. and Huss V. A. R. (2001).
Traditional generic concepts versus 18S rRNA gene phylogeny in the green algal
family Selenastraceae (Chlorophyceae,
Chlorophyta). Journal of Phycology,
37(5): 852 - 865.
25. Heischkamp, E., Varlik, M., Korkmaz, Ö., Oeljeklaus, G. and Görner K.
(2011). Analysis of operating conditions of a flue gas scrubbing process for CO2
separation in a coal-fired power plant. Energy Procedia, 4:1377 - 1384.
26. Ma, S., Chen, G., Guo, M., Zhao, L., Han, T., Zhu, S. (2014). Path
analysis on CO2 resource utilization based on carbon capture using
ammonia method in coal-fired power Plants. Renewable and Sustainable Energy
Reviews, 37: 687 - 697.
27. Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H.
and Chen, H. L. (2015). Saline
wastewater treatment by Chlorella
vulgaris with simultaneous algal lipid accumulation triggered by nitrate
deficiency. Bioresource Technology, 193: 68 - 75.
28. Gerken, H. G., Donohoe, B. Knoshaug, E. P. (2013). Enzymatic cell wall
degradation of Chlorella vulgaris and
other microalgae for biofuels production. Planta, 237(1): 239 - 253.
29. Nurachman, Z., Hartini, H., Rahmaniyah, W. R., Kurnia, D., Hidayat, R.,
Prijamboedi, B., Suendo, V., Ratnaningsih, E., Panggabean, L. M. G. and Nurbaiti,
S. (2015). Tropical marine Chlorella sp.
PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal
Research, 10: 25 - 32.
30. Mathimani, T., Uma, L. and Prabaharan D. (2015). Homogeneous acid
catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and
its characterization. Renewable Energy, 81: 523 - 533.
31. Imase, M., Watanabe, K., Aoyagi, H. and Tanaka, H. (2008). Construction of
an artificial symbiotic community using a Chlorella-symbiont association as a
model. FEMS Microbiology Ecology, 63(3): 273 - 282.
32. Borkenstein, C. G., Knoblechner, J., Frühwirth, H. and Schagerl M. (2011).
Cultivation of Chlorella emersonii with flue gas derived from a cement plant. Journal
of Applied Phycology, 23(1): 131 - 135.