Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 470 - 483
DOI:
https://doi.org/10.17576/mjas-2017-2102-23
EFFECT
OF MASS LOADING AND MICROWAVE ABSORBER APPLICATION METHOD ON THE PRODUCT FROM
MICROWAVE ASSISTED PYROLYSIS OF PALM OIL MILL EFFLUENT
(Kesan Beban Jisim
dan Aplikasi Kaedah Penyerap Gelombang Mikro Kepada Produk Terhasil daripada
Sisa Buangan Kilang Kelapa Sawit Melalui Proses Pirolisis Bantuan Gelombang
Mikro)
Zakiuddin Januri1,
Siti Shawalliah Idris1, 2*, Hafifah Amirah Akhawan1, Norazah Abd. Rahman1, 2, 3,
Sharmeela Matali1, 2, Shareena Fairuz Abd Manaf1, 2
1Faculty of Chemical Engineering
2CoRe of Green Technology & Sustainable Development
3CoRe of Frontier Materials & Industry
Application
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
*Corresponding author: shawal075@salam.uitm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Approximately, about 50 million tons of
Palm Oil Mill Effluent (POME) is produced every year, however, discharge of
POME to open water source will cause negative impact to environment. High
production of POME make it impossible to dispose at the disposal company,
therefore, in-situ treatment has been
developed. Current disposal method implemented by palm oil industries is through
biodegradable pond. This method is applied due to high water content in POME
about 90% of water. Microwave assisted pyrolysis would be an alternative method
to deal with the POME since not only can disposed but also can convert to
valuable material such as solid char and pyrolytic oil. In this paper, effect
of mass loading of POME at a range of 100 to 500 grams with additional
activated carbon (AC) was studied. Microwave power level, radiation time and
mixing ratio of AC were set constant at 1000W, 30 minutes and 5% respectively.
Product yields of solid and liquid were analyzed for the best process
performance. Solid char obtained has a potential to use as solid fuel since its
energy content was >20 MJ/kg and has high carbon content at >80%.
Meanwhile, about 20% of chemical content in the pyrolytic oil has the carbon
number in the range of C1 to C10.
Keywords: mass loading,
microwave absorber, microwave-assisted pyrolysis, palm oil mill effluent
Abstrak
Dianggarkan lebih kurang 50 juta ton Sisa Buangan Kilang Kelapa Sawit (POME)
dihasilkan setiap tahun. Pembuangan POME ke sumber air semulajadi seperti
sungai akan menyebabkan impak negatif kepada alam sekitar. Penghasilan POME
yang tinggi menyebabkan ianya mustahil untuk dilupuskan oleh syarikat pelupusan,
oleh yang demikian, rawatan in-situ
dibangunkan. Cara pelupusan terkini oleh industri kelapa sawit adalah melalui
kaedah kolam bio-degradasi. Kaedah ini diaplikasikan berikutan kandungan air
yang tinggi di dalam POME iaitu lebih kurang 90% daripada isi kandungannya. Oleh
yang demikian, kaedah menambahbaik pirolisis bantuan gelombang mikro (MAP)
digunakan dan sekaligus POME dapat dilupuskan dan menukar hasil yang bermanfaat
seperti arang pepejal and minyak pirolisis. Di dalam kajian ini, kesan berat kandungan
POME di dalam anggaran 100g ke 500g dengan penambahan karbon aktif diberi
tumpuan. Kadar kekuatan gelombang mikro, masa radiasi dan nisbah pencampuran
karbon aktif masing – masing dimalarkan pada kadar 1000W, 30 minit dan 5%.
Penghasilan produk arang pepejal dan minyak pirolitik dianalisis untuk
menentukan kadar terbaik penghasilannya. Arang pepejal yang terhasil mempunyai
potensi sebagai sumber tenaga dan mempunyai kapasiti tenaga sekurang-kurangnya
>20 MJ/kg dan mengandungi kandungan karbon >8%. Sementara itu, lebih
kurang 20% kandungan bahan kimia di dalam minyak pirolitik terdiri daripada
karbon nombor pada kadar C1 to C10.
Kata kunci: beban jisim,
penyerap ketuhar gelombang mikro, pirolisis bantuan gelombang mikro, air sisa
kilang sawit
References
1. Aziz, N. A. and Mun, D. L. K. (2012). Malaysia’s biomass potential. Access
online http://www.besustainablemagazine.com/ cms2/malaysias-biomass-potential/.
2.
Rupani,
P. F., Singh, R. P., Ibrahim, M. H. and Esa, N. (2010). Review of current palm
oil mill effluent (POME) treatment methods: vermicomposting as a sustainable
practice. World Applied Sciences Journal,
11(1): 70 – 81.
3.
Iwuagwu, J. O. and Ugwuanyi, J. O. (2014). Treatment and
valorization of palm oil mill effluent through production of food grade yeast
biomass. Journal of Waste Management,
2014: 1 - 9.
4.
Lorestani, A. (2006). Biological treatment of palm oil mill
effluent (POME) using an up-flow anaerobic sludge fixed film (UASFF)
bioreactor. Thesis Doctor of Philosophy, Universiti Teknologi Malaysia.
5.
Khalid, K., Soon, E. M. L. and Chow, K. F. (1998). Microwave
drying of palm oil mill effluent. Pertanika
Journal of Science & Technology, 6(2): 121 – 130.
6.
Salema, A. A. and Ani, F. N. (2010). Microwave pyrolysis of
oil palm fibres. Jurnal Mekanikal,
30: 77 – 86.
7.
Faris, N. A. F. A. (2014). Effect of
power level on
product yield for microwave pyrolysis of palm oil mill
effluent (POME). Thesis Bachelor Chemical Engineering, Chemical Engineering
Faculty, Universiti Teknologi MARA.
8.
Ling, Y. L. (2007). Treatability of palm oil mill effluent
(POME) using black liquor in an anaerobic treatment process. Thesis Doctoral of
Philosophy, Universiti Sains Malaysia.
9.
Borja, R., Banks, C. J., Martin, A. and Khalfaoui, B. (1995).
Anaerobic digestion of palm oil mill effluent and condensation water waste: an
overall kinetic model for methane production and substrate utilization. Bioprocess Engineering, 13(2): 87 – 95.
10. Neoh, C. H., Yahya, A., Adnan, R., Majid, Z. A. and Ibrahim, Z. (2013).
Optimization of decolorization of palm oil mill effluent (POME) by growing
cultures of Aspergillus fumigatus
using response surface methodology.
Environmental Science and Pollution Research, 20(5): 2912 – 2923.
11. Oswal, N., Sarma, P. M., Zinjarde, S. S. and Pant, A. (2002). Palm oil
mill effluent treatment by a tropical marine yeast. Bioresource Technology, 85(1): 35 – 37.
12. Agamuthu, P., Tan, E. L. and Shaiful, A. A. A. (1986). Effect of aeration
and soil inoculum on the composition of palm oil mill effluent (POME). Agricultural Wastes, 15(2): 121 – 132.
13. Teng, T. T., Wong, Y. S., Ong, S. A., Norhashimah, M. and Rafatullah, M.
(2013). Start-up operation of anaerobic degradation process for palm oil mill
effluent in anaerobic bench scale reactor (ABSR). Procedia Environmental Sciences, 18: 442 – 450.
14. Abdurahman, N., Azhari, N. and Rosli, Y. (2013). The performance
evaluation of anaerobic methods for palm oil mill effluent (POME) treatment: A
review. INTECH Open Access Publisher.
15. Chin, K. K., Lee, S. W. and Mohammad, H. H. (1996). A study of palm oil
mill effluent treatment using a pond system. Water Science and Technology, 34(11): 119 – 123.
16. Chooi, C. (1984). Ponding system for palm oil mill effluent treatment. Proceeding on Workshop of Palm Oil Mill
Effluent Technology: pp. 53 – 63.
17. Fakhru’l-Razi, A. and Noor, M. J. M. M. (1999). Treatment of palm oil mill
effluent (POME) with the membrane anaerobic system (MAS). Water Science and Technology, 39(10-11): 159 – 163.
18. Mushtaq, F., Mat, R. and Ani, F. N. (2014). A review on microwave assisted
pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews, 39: 555 – 574.
19. Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S. and Read,
A. G. (2005). Microwave technology for energy-efficient processing of waste. Applied Energy, 81(1): 85 – 113.
20. Calabrò, E. and Magazù, S. (2012). Comparison between conventional
convective heating and microwave heating: an FTIR spectroscopy study of the
effects of microwave oven cooking of bovine breast meat. Journal of Electromagnetic Analysis and Applications, 4(11): 433 –
449.
21. Ismail, K., Ishak, M. A. M., Ab Ghani, Z., Abdullah, M. F., Safian, M. T.
U., Idris, S. S., Tahiruddin, S., Yunus, M. F. M. and Hakimi, N. I. N. M.
(2013). Microwave-assisted pyrolysis of palm kernel shell: Optimization using
response surface methodology (RSM). Renewable
Energy, 55: 357 – 365.
22. Fernández, F., Arenillas, A., and Menéndez, J. Á. (2011). Microwave
heating applied to pyrolysis, advances in induction and microwave heating of
mineral and organic materials, Stanisław Grundas (Ed.). INTECH Open Access
Publisher.
23. Wang, L., Lei, H., Ren, S., Bu, Q., Liang, J., Wei, Y., Liu, Y., Lee, G.
S. J., Chen, S., Tang, J. and Zhang, Q. (2012). Aromatics and phenols from
catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a
catalyst. Journal of Analytical and
Applied Pyrolysis, 98: 194 – 200.
24. Khairuddin, M. N., Sulaiman, A., Syahlan, S., Zulkefli, F., Bula, J., Wan
Abdul Rahman, W. M. N., Kassim, J., Md
Isa, I. and Mat Tahir, M. R. (2013). Analysis and management of methane
emissions from dumping pond: A cases study at Felda Jengka 8 palm oil mill. Proceeding KONAKA: pp. 35 – 41.
25. Januri, Z., Rahman, N. A., Idris, S. S., Matali, S., Manaf, S. F. A., Faris,
N. A. F. A. and Rosland, N. (2014). Effect of activated carbon as microwave
absorbance on the yields of microwave assisted pyrolysis of palm oil mill
effluent. 3rd IET
International Conference on Clean Energy and Technology: pp. 1 - 9.
26. Januri, Z., Rahman, N. B. A., Idris, S. S., Matali, S., Manaf, A. and Fairuz,
S. (2014). Yields performance of automotive paint sludge via microwave assisted
pyrolysis. In Applied Mechanics and Materials. Trans Tech Publications: pp. 191
– 195.
27. Zuo, W., Tian, Y. and Ren, N. (2011). The important role of microwave
receptors in bio-fuel production by microwave-induced pyrolysis of sewage
sludge. Waste Management, 31(6): 1321
– 1326.
28. Salema, A. A., Yeow, Y. K., Ishaque, K., Ani, F. N., Afzal, M. T. and Hassan,
A. (2013). Dielectric properties and microwave heating of oil palm biomass and
biochar. Industrial Crops and Products,
50: 366 – 374.
29. Meredith, R. (1998). Engineer's Handbook of Industrial Microwave Heating.
London: The Institution of Electrical Engineers.
30. Lam, S. S., Russell, A. D., Lee, C. L. and Chase, H. A. (2012).
Microwave-heated pyrolysis of waste automotive engine oil: Influence of
operation parameters on the yield, composition, and fuel properties of
pyrolysis oil. Fuel, 92(1): 327 – 339.
31. Chemat, F. and Poux, M. (2001). Microwave assisted pyrolysis of urea
supported on graphite under solvent-free conditions. Tetrahedron Letters, 42(22): 3693 – 3695.
32. Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., Li, Y., Lin, X.,
Liu, Y., Chen, P. and Ruan, R. (2014). Fast microwave-assisted catalytic
pyrolysis of sewage sludge for bio-oil production. Bioresource Technology, 172: 162 – 168.
33. Dai, Q., Jiang, X., Wang, F., Chi, Y. and Yan, J. (2013). PCDD/Fs in wet
sewage sludge pyrolysis using conventional and microwave heating. Journal of Analytical and Applied Pyrolysis,
104: 280 – 286.
34. Jiang, J. and Ma, X. (2011). Experimental research of microwave pyrolysis
about paper mill sludge. Applied Thermal
Engineering, 31(17): 3897 – 3903.
35. Menéndez, J. A., Domınguez, A., Inguanzo, M. and Pis, J. J. (2004).
Microwave pyrolysis of sewage sludge: analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis,
71(2): 657 – 667.\
36. Wang, X. H., Chen, H. P., Ding, X. J., Yang, H. P., Zhang, S. H. and Shen,
Y. Q. (2009). Properties of gas and char from microwave pyrolysis of pine
sawdust. BioResources, 4(3): 946 – 959.
37. Menendez, J. A., Inguanzo, M. and Pis, J. J. (2002). Microwave-induced
pyrolysis of sewage sludge. Water
Research, 36(13): 3261 – 3264.
38. Thangalazhy-Gopakumar, S., Al-Nadheri, W. M. A., Jegarajan, D., Sahu, J.
N., Mubarak, N. M. and Nizamuddin, S. (2015). Utilization of palm oil sludge
through pyrolysis for bio-oil and bio-char production. Bioresource Technology, 178: 65 – 69.
39. Jing-Biao, Y. and Ning-Sheng, C. (2006). A TG-FTIR study on catalytic
pyrolysis of coal. Journal of Fuel
Chemistry and Technology, 34(6): 650 – 654.
40. Domı́, A., Menendez, J. A., Inguanzo, M., Bernad, P. L. and Pis, J. J.
(2003). Gas chromatographic–mass spectrometric study of the oil fractions
produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 1012(2): 193
– 206.
41. Xiong, S., Zhuo, J., Zhang, B. and Yao, Q. (2013). Effect of moisture
content on the characterization of products from the pyrolysis of sewage
sludge. Journal of Analytical and Applied
Pyrolysis, 104: 632 –639.
42. Bolotov, V. A., Udalov, E. I., Parmon, V. N., Tanashev, Y. Y. and Chernouso,
Y. D. (2012). Pyrolysis of heavy hydrocarbons under microwave heating of
catalysts and adsorbents. Journal of
Microwave Power and Electromagnetic Energy, 46(1): 39 – 46.