Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 470 - 483

DOI: https://doi.org/10.17576/mjas-2017-2102-23

 

 

 

EFFECT OF MASS LOADING AND MICROWAVE ABSORBER APPLICATION METHOD ON THE PRODUCT FROM MICROWAVE ASSISTED PYROLYSIS OF PALM OIL MILL EFFLUENT

 

(Kesan Beban Jisim dan Aplikasi Kaedah Penyerap Gelombang Mikro Kepada Produk Terhasil daripada Sisa Buangan Kilang Kelapa Sawit Melalui Proses Pirolisis Bantuan Gelombang Mikro)

 

Zakiuddin Januri1, Siti Shawalliah Idris1, 2*, Hafifah Amirah Akhawan1, Norazah Abd. Rahman1, 2, 3, Sharmeela Matali1, 2, Shareena Fairuz Abd Manaf1, 2

 

1Faculty of Chemical Engineering

2CoRe of Green Technology & Sustainable Development

3CoRe of Frontier Materials & Industry Application

Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: shawal075@salam.uitm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Approximately, about 50 million tons of Palm Oil Mill Effluent (POME) is produced every year, however, discharge of POME to open water source will cause negative impact to environment. High production of POME make it impossible to dispose at the disposal company, therefore, in-situ treatment has been developed. Current disposal method implemented by palm oil industries is through biodegradable pond. This method is applied due to high water content in POME about 90% of water. Microwave assisted pyrolysis would be an alternative method to deal with the POME since not only can disposed but also can convert to valuable material such as solid char and pyrolytic oil. In this paper, effect of mass loading of POME at a range of 100 to 500 grams with additional activated carbon (AC) was studied. Microwave power level, radiation time and mixing ratio of AC were set constant at 1000W, 30 minutes and 5% respectively. Product yields of solid and liquid were analyzed for the best process performance. Solid char obtained has a potential to use as solid fuel since its energy content was >20 MJ/kg and has high carbon content at >80%. Meanwhile, about 20% of chemical content in the pyrolytic oil has the carbon number in the range of C1 to C10.

 

Keywords:  mass loading, microwave absorber, microwave-assisted pyrolysis, palm oil mill effluent

 

Abstrak

Dianggarkan lebih kurang 50 juta ton Sisa Buangan Kilang Kelapa Sawit (POME) dihasilkan setiap tahun. Pembuangan POME ke sumber air semulajadi seperti sungai akan menyebabkan impak negatif kepada alam sekitar. Penghasilan POME yang tinggi menyebabkan ianya mustahil untuk dilupuskan oleh syarikat pelupusan, oleh yang demikian, rawatan in-situ dibangunkan. Cara pelupusan terkini oleh industri kelapa sawit adalah melalui kaedah kolam bio-degradasi. Kaedah ini diaplikasikan berikutan kandungan air yang tinggi di dalam POME iaitu lebih kurang 90% daripada isi kandungannya. Oleh yang demikian, kaedah menambahbaik pirolisis bantuan gelombang mikro (MAP) digunakan dan sekaligus POME dapat dilupuskan dan menukar hasil yang bermanfaat seperti arang pepejal and minyak pirolisis. Di dalam kajian ini, kesan berat kandungan POME di dalam anggaran 100g ke 500g dengan penambahan karbon aktif diberi tumpuan. Kadar kekuatan gelombang mikro, masa radiasi dan nisbah pencampuran karbon aktif masing – masing dimalarkan pada kadar 1000W, 30 minit dan 5%. Penghasilan produk arang pepejal dan minyak pirolitik dianalisis untuk menentukan kadar terbaik penghasilannya. Arang pepejal yang terhasil mempunyai potensi sebagai sumber tenaga dan mempunyai kapasiti tenaga sekurang-kurangnya >20 MJ/kg dan mengandungi kandungan karbon >8%. Sementara itu, lebih kurang 20% kandungan bahan kimia di dalam minyak pirolitik terdiri daripada karbon nombor pada kadar C1 to C10.

 

Kata kunci:    beban jisim, penyerap ketuhar gelombang mikro, pirolisis bantuan gelombang mikro, air sisa kilang sawit

 

References

1.       Aziz, N. A. and Mun, D. L. K. (2012). Malaysia’s biomass potential. Access online http://www.besustainablemagazine.com/ cms2/malaysias-biomass-potential/.

2.       Rupani, P. F., Singh, R. P., Ibrahim, M. H. and Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Applied Sciences Journal, 11(1): 70 – 81.

3.       Iwuagwu, J. O. and Ugwuanyi, J. O. (2014). Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. Journal of Waste Management, 2014: 1 - 9.

4.       Lorestani, A. (2006). Biological treatment of palm oil mill effluent (POME) using an up-flow anaerobic sludge fixed film (UASFF) bioreactor. Thesis Doctor of Philosophy, Universiti Teknologi Malaysia.

5.       Khalid, K., Soon, E. M. L. and Chow, K. F. (1998). Microwave drying of palm oil mill effluent. Pertanika Journal of Science & Technology, 6(2): 121 – 130.

6.       Salema, A. A. and Ani, F. N. (2010). Microwave pyrolysis of oil palm fibres. Jurnal Mekanikal, 30: 77 – 86.

7.       Faris, N. A. F. A. (2014). Effect  of  power  level  on  product  yield  for microwave pyrolysis of palm oil mill effluent (POME). Thesis Bachelor Chemical Engineering, Chemical Engineering Faculty, Universiti Teknologi MARA.

8.       Ling, Y. L. (2007). Treatability of palm oil mill effluent (POME) using black liquor in an anaerobic treatment process. Thesis Doctoral of Philosophy, Universiti Sains Malaysia.

9.       Borja, R., Banks, C. J., Martin, A. and Khalfaoui, B. (1995). Anaerobic digestion of palm oil mill effluent and condensation water waste: an overall kinetic model for methane production and substrate utilization. Bioprocess Engineering, 13(2): 87 – 95.

10.    Neoh, C. H., Yahya, A., Adnan, R., Majid, Z. A. and Ibrahim, Z. (2013). Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Environmental Science and Pollution Research, 20(5): 2912 – 2923.

11.    Oswal, N., Sarma, P. M., Zinjarde, S. S. and Pant, A. (2002). Palm oil mill effluent treatment by a tropical marine yeast. Bioresource Technology, 85(1): 35 – 37.

12.    Agamuthu, P., Tan, E. L. and Shaiful, A. A. A. (1986). Effect of aeration and soil inoculum on the composition of palm oil mill effluent (POME). Agricultural Wastes, 15(2): 121 – 132.

13.    Teng, T. T., Wong, Y. S., Ong, S. A., Norhashimah, M. and Rafatullah, M. (2013). Start-up operation of anaerobic degradation process for palm oil mill effluent in anaerobic bench scale reactor (ABSR). Procedia Environmental Sciences, 18: 442 – 450.

14.    Abdurahman, N., Azhari, N. and Rosli, Y. (2013). The performance evaluation of anaerobic methods for palm oil mill effluent (POME) treatment: A review. INTECH Open Access Publisher.

15.    Chin, K. K., Lee, S. W. and Mohammad, H. H. (1996). A study of palm oil mill effluent treatment using a pond system. Water Science and Technology, 34(11): 119 – 123.

16.    Chooi, C. (1984). Ponding system for palm oil mill effluent treatment. Proceeding on Workshop of Palm Oil Mill Effluent Technology: pp. 53 – 63.

17.    Fakhru’l-Razi, A. and Noor, M. J. M. M. (1999). Treatment of palm oil mill effluent (POME) with the membrane anaerobic system (MAS). Water Science and Technology, 39(10-11): 159 – 163.

18.    Mushtaq, F., Mat, R. and Ani, F. N. (2014). A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews, 39: 555 – 574.

19.    Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S. and Read, A. G. (2005). Microwave technology for energy-efficient processing of waste. Applied Energy, 81(1): 85 – 113.

20.    Calabrò, E. and Magazù, S. (2012). Comparison between conventional convective heating and microwave heating: an FTIR spectroscopy study of the effects of microwave oven cooking of bovine breast meat. Journal of Electromagnetic Analysis and Applications, 4(11): 433 – 449.

21.    Ismail, K., Ishak, M. A. M., Ab Ghani, Z., Abdullah, M. F., Safian, M. T. U., Idris, S. S., Tahiruddin, S., Yunus, M. F. M. and Hakimi, N. I. N. M. (2013). Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM). Renewable Energy, 55: 357 – 365.

22.    Fernández, F., Arenillas, A., and Menéndez, J. Á. (2011). Microwave heating applied to pyrolysis, advances in induction and microwave heating of mineral and organic materials, Stanisław Grundas (Ed.). INTECH Open Access Publisher.

23.    Wang, L., Lei, H., Ren, S., Bu, Q., Liang, J., Wei, Y., Liu, Y., Lee, G. S. J., Chen, S., Tang, J. and Zhang, Q. (2012). Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. Journal of Analytical and Applied Pyrolysis, 98: 194 – 200.

24.    Khairuddin, M. N., Sulaiman, A., Syahlan, S., Zulkefli, F., Bula, J., Wan Abdul Rahman, W. M. N., Kassim, J.,  Md Isa, I. and Mat Tahir, M. R. (2013). Analysis and management of methane emissions from dumping pond: A cases study at Felda Jengka 8 palm oil mill. Proceeding KONAKA: pp. 35 – 41.

25.    Januri, Z., Rahman, N. A., Idris, S. S., Matali, S., Manaf, S. F. A., Faris, N. A. F. A. and Rosland, N. (2014). Effect of activated carbon as microwave absorbance on the yields of microwave assisted pyrolysis of palm oil mill effluent. 3rd IET International Conference on Clean Energy and Technology: pp. 1 - 9.

26.    Januri, Z., Rahman, N. B. A., Idris, S. S., Matali, S., Manaf, A. and Fairuz, S. (2014). Yields performance of automotive paint sludge via microwave assisted pyrolysis. In Applied Mechanics and Materials. Trans Tech Publications: pp. 191 – 195.

27.    Zuo, W., Tian, Y. and Ren, N. (2011). The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Management, 31(6): 1321 – 1326.

28.    Salema, A. A., Yeow, Y. K., Ishaque, K., Ani, F. N., Afzal, M. T. and Hassan, A. (2013). Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products, 50: 366 – 374.

29.    Meredith, R. (1998). Engineer's Handbook of Industrial Microwave Heating. London: The Institution of Electrical Engineers.

30.    Lam, S. S., Russell, A. D., Lee, C. L. and Chase, H. A. (2012). Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel, 92(1): 327 – 339.

31.    Chemat, F. and Poux, M. (2001). Microwave assisted pyrolysis of urea supported on graphite under solvent-free conditions. Tetrahedron Letters, 42(22): 3693 – 3695.

32.    Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., Li, Y., Lin, X., Liu, Y., Chen, P. and Ruan, R. (2014). Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource Technology, 172: 162 – 168.

33.    Dai, Q., Jiang, X., Wang, F., Chi, Y. and Yan, J. (2013). PCDD/Fs in wet sewage sludge pyrolysis using conventional and microwave heating. Journal of Analytical and Applied Pyrolysis, 104: 280 – 286.

34.    Jiang, J. and Ma, X. (2011). Experimental research of microwave pyrolysis about paper mill sludge. Applied Thermal Engineering, 31(17): 3897 – 3903.

35.    Menéndez, J. A., Domınguez, A., Inguanzo, M. and Pis, J. J. (2004). Microwave pyrolysis of sewage sludge: analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis, 71(2): 657 – 667.\

36.    Wang, X. H., Chen, H. P., Ding, X. J., Yang, H. P., Zhang, S. H. and Shen, Y. Q. (2009). Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources, 4(3): 946 – 959.

37.    Menendez, J. A., Inguanzo, M. and Pis, J. J. (2002). Microwave-induced pyrolysis of sewage sludge. Water Research, 36(13): 3261 – 3264.

38.    Thangalazhy-Gopakumar, S., Al-Nadheri, W. M. A., Jegarajan, D., Sahu, J. N., Mubarak, N. M. and Nizamuddin, S. (2015). Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology, 178: 65 – 69.

39.    Jing-Biao, Y. and Ning-Sheng, C. (2006). A TG-FTIR study on catalytic pyrolysis of coal. Journal of Fuel Chemistry and Technology, 34(6): 650 – 654.

40.    Domı́, A., Menendez, J. A., Inguanzo, M., Bernad, P. L. and Pis, J. J. (2003). Gas chromatographic–mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 1012(2): 193 – 206.

41.    Xiong, S., Zhuo, J., Zhang, B. and Yao, Q. (2013). Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. Journal of Analytical and Applied Pyrolysis, 104: 632 –639.

42.    Bolotov, V. A., Udalov, E. I., Parmon, V. N., Tanashev, Y. Y. and Chernouso, Y. D. (2012). Pyrolysis of heavy hydrocarbons under microwave heating of catalysts and adsorbents. Journal of Microwave Power and Electromagnetic Energy, 46(1): 39 – 46.

 




Previous                    Content                    Next