Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 496 - 511

DOI: https://doi.org/10.17576/mjas-2017-2102-25

 

 

 

PALM OIL-BASED PRECURSORS FOR DEVELOPMENT OF POLYMERIC DELIVERY SYSTEM

 

(Pelopor Berasaskan Minyak Sawit untuk Pembangunan Sistem Penyampai Polimer)

 

Rida Tajau1,2, Rosiah Rohani1*, Wan Nor Roslam Wan Isahak1, Mek Zah Salleh2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Radiation Processing Technology Division,

Malaysia Nuclear Agency, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author: rosiah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

The use of precursors from natural based polymers offer a more biocompatible and biodegradable properties in producing polymer drug vehicle compared to drug vehicles made from synthetic polymer precursors, which normally found in high molecular weight (MW). High MW polymer will lead to immunologic inflammatory responses due to their lower biodegradability and higher cytotoxicity compared to low MW that could give smaller particle size, higher solubility, higher release efficiency, non-immunogenic, better biodegradability and lower cytotoxicity. Therefore, this study is aimed to produce valuable precursors, particularly to produce epoxidized palm olein (EPOo) and diol, to be used in the development of a new polymeric drug vehicle with low MW.  An EPOo was synthesized via in-situ epoxidizing of palm olein (POo) with peracid and sulfuric acid (H2SO4) catalyst. Meanwhile the diol was synthesized using hydroxylation of palm oil-based oleic acid via esterification of oleic acid (OA) with glycerol and 4-dodecylbenzyl sulfonic acid catalyst (DBSA).  It was found that both palm oil-based precursors have been successfully synthesized from natural resources of palm oil. Physico-chemical properties of the synthesized precursors showed that the EPOo and the diol possess average molecular weight (MW) between 900-1500 g/mol and hydroxyl functionality between 2 and 3, based on the presence of hydroxyl (O-H) group functionality, showed in the Infra-red (IR) spectra in the range of 3200-3600 cm-1. These low MW palm oil based-precursors have potential uses for the design and development of new properties of polymeric drug vehicle such as acrylated palm olein (APOo) and polyol polyester, which will produce particle size in the range of 100 - 200 nm or smaller with high efficiency drug loading and controlled release profiles.

 

Keywords:  drug delivery system, palm oil, polymeric nanoparticle

 

Abstrak

Penggunaan pelopor dari polimer semulajadi bagi menghasilkan penyampai ubat polimer mempunyai kelebihan tertentu iaitu ianya bersifat bioserasi dan biodegradasi berbanding sistem penyampai ubat yang dibuat daripada pelopor polimer sintetik, kebiasaannya mempunyai berat molekul (MW) yang tinggi.  Polimer dengan MW yang tinggi boleh menyebabkan gerak balas keradangan keimunan akibat kurang keterbiodegradasikan dan kesitotoksikan yang tinggi dibandingkan MW yang rendah yang boleh menghasilkan partikel bersaiz lebih kecil, keterlarutan dan kecekapan perlepasan yang tinggi, tidak imunogen, terbiodegradasi dengan lebih baik dan sitotoksiti yang rendah. Oleh itu, kajian ini bertujuan menghasilkan pelopor yang bersifat istimewa, terutamanya minyak sawit olein terepoksida (EPOo) dan diol yang digunakan dalam membangunkan sistem penyampaian ubat dengan MW yang rendah. EPOo telah disintesis menggunakan pengepoksidaan in-situ minyak sawit olein (POo) dengan perasid dan pemangkin asid sulfurik (H2SO4). Sementara itu, diol disintesis menggunakan penghidroksilan minyak sawit oleik menggunakan pengesteran asid oleik (OA) dengan gliserol dan pemangkin asid sulfonik 4-dodesilbenzil (DBSA). Hasil penemuan mendapati kedua-dua pelopor yang berasaskan minyak sawit ini telah berjaya disintesis daripada sumber semulajadi minyak sawit.  Sifat fisiko-kimia pelopor yang telah disintesis menunjukkan EPOo dan diol mempunyai berat molekul (MW) antara 900-1500 g/mol dan bilangan hidroksil antara 2 dan 3, berdasarkan kehadiran kumpulan berfungsi hidroksil (O-H), yang ditunjukkan dalam spektra Infra-merah (IR) dalam julat 3200-3600 cm-1. Pelopor berasaskan minyak sawit yang mempunyai berat molekul yang rendah berpotensi untuk direkabentuk bagi membangunkan sistem penyampai ubat polimer yang  bersifat  baru  seperti  minyak sawit  olein  terakrilat  (APOo)  dan poliol poliester, yang menghasilkan partikel bersaiz 100-200 nm atau lebih kecil dengan kecekapan pemuatan ubat dan profil perlepasan terkawal yang tinggi.

 

Kata kunci:  sistem penyampai ubat, minyak sawit, nanopartikel polimer

 

References

1.       Liechty, W. B., Kryscio, D. R., Slaughter, B. V. and Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review Chemical and Biomolecular Engineering, 1: 149 – 173.

2.       Vilara, G., Tulla-Puche, J. and Albericio, F. (2012). Polymers and drug delivery systems. Current Drug Delivery, 9(4): 1 - 24.

3.       Saurabh, K. V., Rani, S., Rani, S. and Kesari, A. (2013). Drug targeting by erythrocytes: A carrier system. Scholars Academic Journal of Pharmacy, 2(2): 144 – 156.

4.       Srikanth, K., Rama Mohan Gupta, V., Manvi, S. R. and Devanna, N. (2012). Particulate carrier systems – a review. International Research Journal of Pharmacy, 3(11): 22 – 26.

5.       Takakura, Y. and Hashida, M. (1996). Macromolecular carrier systems for targeted drug delivery: Pharmacokinetic considerations on biodistribution. Pharmaceutical Research, 13(6): 820 – 831.

6.       Abdelwahab, S. I., Sheikh, B. Y., Elhassan Taha, M. M., Chee, W. H., Abdullah, R., Yagoub, U., El-Sunousi, R. and Eid, E. E. (2013). Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. International Journal of Nanomedicine, 8: 2163 – 2172.

7.       Baharu, M. N., Kadhum, A. A. H., Al-Amiery, A. A., and Mohamad, A. B. (2015). Synthesis and characterization of polyesters derived from glycerol, azelaic acid, and succinic acid. Green Chemistry Letters and Reviews, 8(1): 31 - 38.

8.       Derawi, D., Abdullah, B. M., Huri, H. Z., Yusop, R. M., Salimon, J., Hairunisa, N. and Salih, N. (2014). Palm olein as renewable raw materials for industrial and pharmaceutical products applications: chemical characterization and physicochemical properties studies. Advances in Materials Science and Engineering, 2014:1 - 5.

9.       Tajau, R., Mohd Dahlan, K. Z., Mahmood, M. H., Wan Yunus, W. M. Z., Ismail, M., Salleh, M. and Muhammad Faisal, S. (2012). Acrylated vegetable oil nanoparticle as a carrier and controlled release of the anticancer drug-thymoquinone. International Conference on Enabling Science and Nanotechnology 2012 (ESciNano 2012), Persada Johor International Convention Center, Johor Bahru, Malaysia.

10.    Tajau, R., Wan Yunus, W. M. Z., Mohd Dahlan, K. Z., Mahmood, M. H., Hashim, K., Ismail, M., Salleh, M. Z. and Che Ismail, R. (2013b). Radiation-induced formation of acrylated palm oil nanoparticle using pluronic f-127 microemulsion system. Pertanika Journal of Science and Technology, 21 (21): 135 – 142.

11.    Zainol, S., Basri, M., Basri, H., Shamsuddin, A. F., Abdul-Gani, S. S., Abedi Karjiban, R. and Abdul-Malek, E. (2012). Formulation Optimization of a palm-based nanoemulsion system containing levodopa.  International Journal of Molecular Sciences, 13: 13049 - 13064.

12.    Vroman, I. and Tighzert, L. (2009). Biodegradable polymers. Materials, 2: 307 - 344.

13.    Goud, V. V., Dinda, S., Patwardhan, A. V. and Pradhan, N. C. (2010).  Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. Asian-Pacific Journal of Chemical Engineering, 5: 346 – 354.

14.    Derawi, D. and Salimon, J. (2010). Optimization on epoxidation of palm olein by using performic acid. E-Journal of Chemistry, 7(4): 1440 - 1448.

15.    Mahmood, M. H., Tajau, R., Salleh, M. Z. and Che Ismail, R. (2011). Malaysia Patent No. MY-142814-A: Method for manufacturing palm oil based hydroxyl containing products for use in making polyurethane materials.

16.    Rihayat, T. and Suryani. (2010). Synthesis and properties of biobased polyurethane/montmorillonite nanocomposites. World Academy of Science, Engineering and Technology, 4(5): 714 - 718.

17.    Kolvari, E., Zolfigol, M. A. and Peiravi, M. (2012). Green synthesis of quinoxaline derivatives using pdodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water. Green Chemistry Letters and Reviews, 5(2): 155 - 159.

18.    Tajau, R., Mahmood, M. H., Salleh, M. Z., Che Ismail, R., Abang Othman, A. M., Abdul Rahman, F. and Mohd Dahlan, K. Z. (2008). Synthesis and characterization of a highly-functional polyol-polyurethane based palm oil for photo-curable resin. The Nuclear Malaysia R&D Seminar 2008, Selangor, Malaysia.

19.    Tajau, R., Mahmood, M. H., Salleh, M. Z., Mohd Dahlan, K. Z., Che Ismail, R., Muhammad Faisal, S. and Sheikh Abdul Rahman, S. M. Z. (2013a). Production of uv-curable palm oil resins/oligomers using laboratory scale and pilot scale systems. Sains Malaysiana, 42(44): 459 - 467.

20.    Ahmad, S., Rafie, A. and Ismail, Z. (1987). PORIM Report PO (125a) 87: Epoxidized palm oil and palm stearin as plasticizer/stabilizer. Selangor, Malaysia: Palm Oil Research Institute of Malaysia (PORIM).

21.    Bolley, D. S., Gall, R. J., Goldsmith, W. F., Maerker, G., Pohle, W. D., Sobatzki, R. J., Walker, R.O. and Barlow, D. O. (1964). Report of the epoxidized oils subcommittee on oxirane oxygen. Journal of the American Oil Chemists Society, 41(1): 86 - 87.

22.    ASTM. (2011). D974: Standard test method for acid and base number by color-indicator titration. West Conshohocken, Pennsylvania, Unites State of America: ASTM International.

23.    ASTM. (1979). D 1962-67: Test for saponification value of drying oils, fats and polymerized fatty acids. Annual Book of American Society for Testing and Material (ASTM) Standards. 29: 259 - 261.

24.    AOCS. (1988). Cd 1-25: Iodine Value of Fats and Oils Wijs Method. The American Oil Chemists' Society (AOCS) Official Method.

25.    Beare-Rogers, J., Dieffenbacher, A., and Holm, J. V. (2001). International Union of Pure And Applied Chemistry (IUPAC) joint committee of International Union of Nutritional Sciences and Iupac Commission on Food: Lexicon of lipid nutrition. Pure Applied Chemistry, 73(4): 685 - 744.

26.    Codex, F. C. (1972). Food Chemicals Codex Second Edition. United State of America: National Academic of Sciences, Washington.

27.    Lubrizol. (2015). Lubrizol test procedure. TP-TM-006C: Determination of saponification value: pp. 1 - 2.

28.    ASTM. (2000). D 4274 – 99: Standard test methods for testing polyurethane raw materials: Determination of hydroxyl numbers of polyols. Annual Book of ASTM Standards.

29.    Ionescu, M. (2005). Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited. Shropshire, United Kingdom.

30.    Brookfield. (2015). Operating instructions (Manual No. M/03-165-C0508W) for Brookfield Digital Viscometer Model DV-II. Brookfield Engineering Laboratories Inc. Stoughton, Massachusetts, U.S.A.

31.    Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotropic growth in fermenters. Journal of Biotechnology, 126: 499 - 507.

32.    Ramli, M. R., Siew, W. L. and Cheah, K. Y. (2009). Production of high oleic palm oils on a pilot scale. Journal of the American Oil Chemists' Society, 86(8): 587 - 594.

33.    Ramli, M. R., Siew, W. L. and Cheah, K. Y. (2008). Properties of high-oleic palm oils derived by fractional crystallization. Journal of Food Science, 73(3): 140 - 145.

34.    Giita Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Wan Yunus, W. M. Z., and Abu Hassan, H. (2012). Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules, 17: 11729 - 11747.

35.    Derawi, D. and Salimon, J. (2013). Palm olein polyols production by batch and continuous hydrolysis. Sains Malaysiana, 42(8): 1121 – 1129.

36.    Saurabh, T., Patnaik, M., Bhagt, S. L. and Renge, V. C. (2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology, 2(4): 491 - 501.

37.    Saurabh, T., Patnaik, M., Bhagat, S. L. and Renge, V. C. (2012). Studies on synthesis of biobased epoxide using cottonseed oil. International Journal of Advanced Engineering Research and Studies, 1(2): 279 - 284.

38.    Bartlett, P. D. (1950). Recent work on the mechanisms of peroxide reactions. Record of Chemical Progress, 11: 47 – 51.

39.    Scrimgeour, C. (2005). Chemistry of fatty acids. 6th Edition. John Wiley & Sons. Inc., Publishers, Scotlands.

40.    Salimon, J., Abdullah, B., M., Yusop, R. M. and Salih, N. (2014). Synthesis, reactivity and application studies for different biolubricants. Chemistry Central Journal, 8(1): 1 -11.

41.    Lligadas, G., Ronda, J. C. and Cádiz, M. G. V. (2010). Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers, 2: 440 - 453.

42.    Czub, P. and Franek, I. (2013). Epoxy resins modified with palm oil derivatives - preparation and properties. Polimery, 58(2):  135 - 139.

43.    Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K. and Md Yunos, K. F. (2016). Comparative study of chemical, mechanical, thermal and barrier properties of poly(lactic acid) plasticized with epoxidized soybean oil and epoxidized palm oil. BioResource, 11(1): 1518 - 1540. 

44.    Giita Silverajah, V. S., Ibrahim, N. A., Wan Yunus, W. M. Z., Abu Hassan, H. and Chieng, B. W. (2012). A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. International Journal of Molecular Sciences, 13:  5878 -5898.

45.    Abdulkarim, S. M., and Ghazali, H. M. (2007). Comparison of melting behaviors of edible oils using conventional and hyper differential scanning calorimetric scan rates. ASEAN Food Journal, 14(1): 25 -35.

46.    Zhang, X., Li, L., Xie, H., Liang, Z., Su, J., Liu, G. and Li, B. (2013). Comparative analysis of thermal behavior, isothermal crystallization kinetics and polymorphism of palm oil fractions. Molecules,  18: 1036 - 1052.

47.    Tan, S. G. and Chow, W. S. (2010).  Thermal properties of anhydride-cured bio-based epoxy blends.  Journal of Thermal Analysis and Calorimetry, 101: 1051 - 1058.

48.    Mahungu, S. M., Hansen, S. L. and Artz, W. E. (1998). Volatile compounds in heated oleic acid-esterified propoxylated glycerol. Journal of the American Oil Chemists' Society, 75(6): 683 - 690.

49.    Mohd Mustafa, S. F., Gan, S. N.  and Yahya, R. (2013).  Synthesis and characterization of novel alkyds derived from palm oil based polyester resin.  Asian Journal of Chemistry, 25(15): 8737 - 8740.

 




Previous                    Content                    Next