Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 496 - 511
DOI:
https://doi.org/10.17576/mjas-2017-2102-25
PALM OIL-BASED
PRECURSORS FOR DEVELOPMENT OF POLYMERIC DELIVERY SYSTEM
(Pelopor
Berasaskan Minyak Sawit untuk Pembangunan Sistem Penyampai Polimer)
Rida Tajau1,2,
Rosiah Rohani1*, Wan Nor Roslam Wan Isahak1, Mek Zah
Salleh2
1Department
of Chemical and Process Engineering, Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Radiation
Processing Technology Division,
Malaysia Nuclear
Agency, 43000 Kajang, Selangor, Malaysia
*Corresponding
author: rosiah@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
The
use of precursors from natural based polymers offer a more biocompatible and
biodegradable properties in producing polymer drug vehicle compared to drug
vehicles made from synthetic polymer precursors,
which normally found in high molecular weight (MW). High MW polymer will
lead to immunologic inflammatory responses due to their lower biodegradability
and higher cytotoxicity compared to low MW that could give smaller particle
size, higher solubility, higher release efficiency, non-immunogenic, better biodegradability
and lower cytotoxicity. Therefore, this study is aimed to produce valuable
precursors, particularly to produce epoxidized palm olein (EPOo) and diol, to
be used in the development of a new polymeric drug vehicle with low MW. An EPOo was synthesized via in-situ epoxidizing of palm olein (POo)
with peracid and sulfuric acid (H2SO4) catalyst. Meanwhile
the diol was synthesized using hydroxylation of palm oil-based oleic acid via
esterification of oleic acid (OA) with glycerol and 4-dodecylbenzyl sulfonic
acid catalyst (DBSA). It was found that
both palm oil-based precursors have been successfully synthesized from natural
resources of palm oil. Physico-chemical properties of the synthesized
precursors showed that the EPOo and the diol possess average molecular weight
(MW) between 900-1500 g/mol and hydroxyl functionality between 2 and 3, based
on the presence of hydroxyl (O-H) group functionality, showed in the Infra-red
(IR) spectra in the range of 3200-3600 cm-1. These low MW palm oil based-precursors have potential uses for the design and
development of new properties of polymeric drug vehicle such as
acrylated palm olein (APOo) and polyol polyester, which will produce particle size in the range of 100 - 200 nm or smaller with high efficiency drug
loading and controlled release profiles.
Keywords: drug delivery system, palm oil, polymeric
nanoparticle
Abstrak
Penggunaan
pelopor dari polimer semulajadi bagi menghasilkan penyampai ubat polimer
mempunyai kelebihan tertentu iaitu ianya bersifat bioserasi dan biodegradasi
berbanding sistem penyampai ubat yang dibuat daripada pelopor polimer sintetik,
kebiasaannya mempunyai berat molekul (MW) yang tinggi. Polimer dengan MW yang tinggi boleh
menyebabkan gerak balas keradangan keimunan akibat kurang keterbiodegradasikan
dan kesitotoksikan yang tinggi dibandingkan MW yang rendah yang boleh menghasilkan
partikel bersaiz lebih kecil, keterlarutan dan kecekapan perlepasan yang
tinggi, tidak imunogen, terbiodegradasi dengan lebih baik dan sitotoksiti yang
rendah. Oleh itu, kajian ini bertujuan menghasilkan pelopor yang bersifat
istimewa, terutamanya minyak sawit olein terepoksida (EPOo) dan diol yang
digunakan dalam membangunkan sistem penyampaian ubat dengan MW yang rendah. EPOo
telah disintesis menggunakan pengepoksidaan in-situ minyak sawit olein (POo) dengan perasid dan pemangkin asid
sulfurik (H2SO4). Sementara itu, diol disintesis menggunakan
penghidroksilan minyak sawit oleik menggunakan pengesteran asid oleik (OA)
dengan gliserol dan pemangkin asid sulfonik 4-dodesilbenzil (DBSA). Hasil penemuan
mendapati kedua-dua pelopor yang berasaskan minyak sawit ini telah berjaya
disintesis daripada sumber semulajadi minyak sawit. Sifat fisiko-kimia pelopor yang telah
disintesis menunjukkan EPOo dan diol mempunyai berat molekul (MW) antara 900-1500
g/mol dan bilangan hidroksil antara 2 dan 3, berdasarkan kehadiran kumpulan
berfungsi hidroksil (O-H), yang ditunjukkan dalam spektra Infra-merah (IR)
dalam julat 3200-3600 cm-1. Pelopor berasaskan minyak sawit yang
mempunyai berat molekul yang rendah berpotensi untuk direkabentuk bagi
membangunkan sistem penyampai ubat polimer yang bersifat baru seperti
minyak sawit olein terakrilat (APOo) dan
poliol poliester, yang menghasilkan partikel bersaiz 100-200 nm atau lebih
kecil dengan kecekapan pemuatan ubat dan profil perlepasan terkawal yang
tinggi.
Kata kunci: sistem penyampai ubat, minyak sawit, nanopartikel polimer
References
1.
Liechty, W. B., Kryscio, D. R., Slaughter, B. V. and
Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review Chemical and Biomolecular Engineering, 1: 149 – 173.
2.
Vilara, G., Tulla-Puche, J. and Albericio, F. (2012).
Polymers and drug delivery systems. Current
Drug Delivery, 9(4): 1 - 24.
3.
Saurabh, K. V., Rani, S., Rani, S. and Kesari, A.
(2013). Drug targeting by erythrocytes: A carrier system. Scholars Academic Journal of Pharmacy, 2(2): 144 – 156.
4.
Srikanth, K., Rama Mohan Gupta, V., Manvi, S. R. and
Devanna, N. (2012). Particulate carrier systems – a review. International Research Journal of Pharmacy, 3(11):
22 – 26.
5.
Takakura, Y. and Hashida, M. (1996). Macromolecular
carrier systems for targeted drug delivery: Pharmacokinetic considerations on
biodistribution. Pharmaceutical Research,
13(6): 820 – 831.
6.
Abdelwahab, S. I., Sheikh, B. Y., Elhassan
Taha, M. M., Chee, W. H., Abdullah, R., Yagoub, U., El-Sunousi, R. and Eid, E.
E. (2013). Thymoquinone-loaded nanostructured lipid carriers: preparation,
gastroprotection, in vitro toxicity, and pharmacokinetic properties after
extravascular administration. International
Journal of Nanomedicine, 8: 2163 – 2172.
7.
Baharu, M. N., Kadhum, A. A. H., Al-Amiery, A. A., and
Mohamad, A. B. (2015). Synthesis and characterization of polyesters derived
from glycerol, azelaic acid, and succinic acid. Green Chemistry Letters and Reviews, 8(1): 31 - 38.
8.
Derawi, D., Abdullah, B. M., Huri, H. Z., Yusop, R. M.,
Salimon, J., Hairunisa, N. and Salih, N. (2014). Palm olein as renewable raw
materials for industrial and pharmaceutical products applications: chemical
characterization and physicochemical properties studies. Advances in Materials Science and Engineering, 2014:1 - 5.
9.
Tajau, R., Mohd Dahlan, K. Z., Mahmood, M. H., Wan
Yunus, W. M. Z., Ismail, M., Salleh, M. and Muhammad Faisal, S. (2012).
Acrylated vegetable oil nanoparticle as a carrier and controlled release of the
anticancer drug-thymoquinone. International
Conference on Enabling Science and Nanotechnology 2012 (ESciNano 2012),
Persada Johor International Convention Center, Johor Bahru, Malaysia.
10.
Tajau, R., Wan Yunus, W. M. Z., Mohd Dahlan, K. Z.,
Mahmood, M. H., Hashim, K., Ismail, M., Salleh, M. Z. and Che Ismail, R.
(2013b). Radiation-induced formation of acrylated palm oil nanoparticle using
pluronic f-127 microemulsion system. Pertanika
Journal of Science and Technology, 21 (21): 135 – 142.
11.
Zainol, S., Basri, M., Basri, H., Shamsuddin, A. F.,
Abdul-Gani, S. S., Abedi Karjiban, R. and Abdul-Malek, E. (2012). Formulation
Optimization of a palm-based nanoemulsion system containing levodopa. International
Journal of Molecular Sciences, 13: 13049 - 13064.
12.
Vroman, I. and Tighzert, L. (2009). Biodegradable
polymers. Materials, 2: 307 - 344.
13.
Goud, V. V.,
Dinda, S., Patwardhan, A. V. and Pradhan, N. C. (2010). Epoxidation
of Jatropha (Jatropha curcas)
oil by peroxyacids. Asian-Pacific
Journal of Chemical Engineering, 5: 346 – 354.
14.
Derawi, D. and Salimon, J. (2010). Optimization on
epoxidation of palm olein by using performic acid. E-Journal of Chemistry, 7(4): 1440 - 1448.
15.
Mahmood, M. H., Tajau, R., Salleh, M. Z. and Che
Ismail, R. (2011). Malaysia Patent No. MY-142814-A: Method for manufacturing
palm oil based hydroxyl containing products for use in making polyurethane
materials.
16.
Rihayat, T. and Suryani. (2010). Synthesis and
properties of biobased polyurethane/montmorillonite nanocomposites. World Academy of Science, Engineering and
Technology, 4(5): 714 - 718.
17.
Kolvari, E., Zolfigol, M. A. and Peiravi, M. (2012).
Green synthesis of quinoxaline derivatives using pdodecylbenzensulfonic acid as
a surfactant-type Bronsted acid catalyst in water. Green Chemistry Letters and Reviews, 5(2): 155 - 159.
18.
Tajau, R., Mahmood, M. H., Salleh, M. Z., Che Ismail,
R., Abang Othman, A. M., Abdul Rahman, F. and Mohd Dahlan, K. Z. (2008).
Synthesis and characterization of a highly-functional polyol-polyurethane based
palm oil for photo-curable resin. The
Nuclear Malaysia R&D Seminar 2008, Selangor, Malaysia.
19.
Tajau, R., Mahmood, M. H., Salleh, M. Z., Mohd Dahlan,
K. Z., Che Ismail, R., Muhammad Faisal, S. and Sheikh Abdul Rahman, S. M. Z.
(2013a). Production of uv-curable palm oil resins/oligomers using laboratory
scale and pilot scale systems. Sains
Malaysiana, 42(44): 459 - 467.
20.
Ahmad, S., Rafie, A. and Ismail, Z. (1987). PORIM
Report PO (125a) 87: Epoxidized palm oil and palm stearin as
plasticizer/stabilizer. Selangor, Malaysia: Palm Oil Research Institute of
Malaysia (PORIM).
21.
Bolley, D. S., Gall, R. J., Goldsmith, W. F., Maerker,
G., Pohle, W. D., Sobatzki, R. J., Walker, R.O. and Barlow, D. O. (1964).
Report of the epoxidized oils subcommittee on oxirane oxygen. Journal of the American Oil Chemists
Society, 41(1): 86 - 87.
22.
ASTM. (2011). D974: Standard test method for acid and
base number by color-indicator titration. West Conshohocken, Pennsylvania,
Unites State of America: ASTM International.
23.
ASTM. (1979). D 1962-67: Test for saponification value
of drying oils, fats and polymerized fatty acids. Annual Book of American
Society for Testing and Material (ASTM) Standards. 29: 259 - 261.
24.
AOCS. (1988). Cd 1-25: Iodine Value of Fats and Oils
Wijs Method. The American Oil Chemists' Society (AOCS) Official Method.
25.
Beare-Rogers, J., Dieffenbacher, A., and Holm, J. V.
(2001). International Union of Pure And Applied Chemistry (IUPAC) joint
committee of International Union of Nutritional Sciences and Iupac Commission
on Food: Lexicon of lipid nutrition. Pure
Applied Chemistry, 73(4): 685 - 744.
26.
Codex, F. C. (1972). Food Chemicals Codex Second
Edition. United State of America: National Academic of Sciences, Washington.
27.
Lubrizol. (2015). Lubrizol test procedure. TP-TM-006C:
Determination of saponification value: pp. 1 - 2.
28.
ASTM. (2000). D 4274 – 99: Standard test methods for
testing polyurethane raw materials: Determination of hydroxyl numbers of
polyols. Annual Book of ASTM Standards.
29.
Ionescu, M. (2005). Chemistry and technology of polyols
for polyurethanes. Rapra Technology Limited. Shropshire, United Kingdom.
30.
Brookfield. (2015). Operating instructions (Manual No.
M/03-165-C0508W) for Brookfield Digital Viscometer Model DV-II. Brookfield
Engineering Laboratories Inc. Stoughton, Massachusetts, U.S.A.
31.
Xu, H., Miao, X. and Wu, Q. (2006). High quality
biodiesel production from a microalga Chlorella protothecoides by heterotropic
growth in fermenters. Journal of
Biotechnology, 126: 499 - 507.
32.
Ramli, M. R., Siew, W. L. and Cheah, K. Y. (2009).
Production of high oleic palm oils on a pilot scale. Journal of the American Oil Chemists' Society, 86(8): 587 - 594.
33.
Ramli, M. R., Siew, W. L. and Cheah, K. Y. (2008).
Properties of high-oleic palm oils derived by fractional crystallization. Journal of Food Science, 73(3): 140 -
145.
34.
Giita Silverajah, V. S., Ibrahim, N. A., Zainuddin, N.,
Wan Yunus, W. M. Z., and Abu Hassan, H. (2012). Mechanical, thermal and
morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules, 17: 11729 - 11747.
35.
Derawi, D. and Salimon, J. (2013). Palm olein polyols
production by batch and continuous hydrolysis. Sains Malaysiana, 42(8): 1121 – 1129.
36.
Saurabh, T., Patnaik, M., Bhagt, S. L. and Renge, V. C.
(2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology, 2(4): 491
- 501.
37.
Saurabh, T., Patnaik, M., Bhagat, S. L. and Renge, V.
C. (2012). Studies on synthesis of biobased epoxide using cottonseed oil. International Journal of Advanced
Engineering Research and Studies, 1(2): 279 - 284.
38.
Bartlett, P. D. (1950). Recent work on the mechanisms
of peroxide reactions. Record of Chemical
Progress, 11: 47 – 51.
39.
Scrimgeour, C. (2005). Chemistry of fatty acids. 6th
Edition. John Wiley & Sons. Inc., Publishers, Scotlands.
40.
Salimon, J., Abdullah, B., M., Yusop, R. M. and Salih,
N. (2014). Synthesis, reactivity and application studies for different
biolubricants. Chemistry Central Journal,
8(1): 1 -11.
41.
Lligadas,
G., Ronda, J. C. and Cádiz, M. G. V. (2010). Oleic and undecylenic acids
as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers, 2: 440 - 453.
42.
Czub, P. and Franek, I. (2013). Epoxy resins modified
with palm oil derivatives - preparation and properties. Polimery, 58(2): 135 - 139.
43.
Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L.,
Basha, R. K. and Md Yunos, K. F. (2016). Comparative study of chemical,
mechanical, thermal and barrier properties of poly(lactic acid) plasticized
with epoxidized soybean oil and epoxidized palm oil. BioResource, 11(1): 1518 - 1540.
44.
Giita Silverajah, V. S., Ibrahim, N. A., Wan Yunus, W.
M. Z., Abu Hassan, H. and Chieng, B. W. (2012). A comparative study on the
mechanical, thermal and morphological characterization of poly(lactic
acid)/epoxidized palm oil blend. International
Journal of Molecular Sciences, 13:
5878 -5898.
45.
Abdulkarim, S. M., and Ghazali, H. M. (2007).
Comparison of melting behaviors of edible oils using conventional and hyper
differential scanning calorimetric scan rates. ASEAN Food Journal, 14(1): 25 -35.
46.
Zhang, X.,
Li, L., Xie, H., Liang, Z., Su, J., Liu, G. and Li, B. (2013). Comparative
analysis of thermal behavior, isothermal crystallization kinetics and
polymorphism of palm oil fractions. Molecules, 18: 1036 - 1052.
47.
Tan, S. G. and Chow, W. S. (2010). Thermal properties of anhydride-cured
bio-based epoxy blends. Journal of Thermal Analysis and Calorimetry,
101: 1051 - 1058.
48.
Mahungu, S. M., Hansen, S. L. and Artz, W. E. (1998).
Volatile compounds in heated oleic acid-esterified propoxylated glycerol. Journal of the American Oil Chemists'
Society, 75(6): 683 - 690.
49.
Mohd Mustafa, S. F., Gan, S. N. and Yahya, R. (2013). Synthesis and characterization of novel
alkyds derived from palm oil based polyester resin. Asian
Journal of Chemistry, 25(15): 8737 - 8740.