Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 484 - 495
DOI:
https://doi.org/10.17576/mjas-2017-2102-24
MOLECULAR WEIGHT CUT-OFF
DETERMINATION OF PRESSURE FILTRATION MEMBRANES VIA COLORIMETRIC DETECTION
METHOD
(Penentuan Berat Sekatan Molekul Bagi Membran Penurasan TekananMelalui
Kaedah Pengesanan Kolorimetri)
Izzati Izni Yusoff, Rosiah Rohani*, Abdul Wahab Mohammad
Department of Chemical and
Process Engineering,
Faculty of Engineering and Built Environment,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: rosiah@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Molecular
weight cut-off (MWCO) of commercial and in-house fabricated membranes is
obtained at 90% rejection of various types of solutes with different molecular
weights (MWs). PEG quantification methods have been favorably employed to
determine membranes’ MWCO. Most of the quantification methods utilizing
high-end equipment using high performance liquid chromatography (HPLC) and
low-end colorimetric method. HPLC method requires an established
chromatographic technique using specific diluents, columns and detectors while
the most referred colorimetric method requires a few processing steps with
concentration up to 7.5 ppm by using UV spectrophotometer. In this work, a
newly modified colorimetric method was established to conduct a simple
measurement for a membrane’s MWCO. The newly modified method has an excellent
linearity for the calibration curves which R2 values are closed to 1
with concentration of up to 150 ppm. A MWCO determination test conducted using
different commercial membranes for confirming this newly modified method found
that similar MWCO values were obtained as given by the membrane’ manufacturers.
In conclusion, this newly modified method is simpler than the formerly used
colorimetric method, reliable and applicable for determining the MWCO of
membranes ranging from UF to NF at a higher range of PEG concentrations
(>150 ppm).
Keywords: molecular weight cut-off, polyethylene glycol, spectrophotometric,
colorimetric, membrane
Abstrak
Berat sekatan molekul (MWCO) bagi membran komersial dan
yang dihasilkan sendiri diperolehi pada 90% penolakan pelbagai jenis bahan
larut dengan berat molekul yang berbeza (MWs). Kaedah kuantifikasi menggunakan
PEG adalah yang paling digemari digunakan bagi menentukan MWCO daripada membran
yang di sintesis. Kebanyakan kaedah menggunakan peralatan atasan seperti
kromatografi cecair berprestasi tinggi (HPLC) dan kaedah bawahan seperti kaedah
kolorimetri. Kaedah HPLC memerlukan teknik kromatografi yang tertubuh
menggunakan bahan pencair, tiang dan pengesan tertentu manakala kaedah
kolorimetri memerlukan beberapa langkah pemprosesan dengan kepekatan hanya
dalam julat sehingga 7.5 ppm menggunakan spektrofotometer UV. Oleh yang
demikian dalam kajian ini, satu kaedah kolorimetri baru yang diubahsuai telah
ditubuhkan untuk mengukur MWCO membran. Kaedah ini mempunyai kelinearan yang
sangat baik, di mana nilai R2 menghampiri 1 dengan kepekatan
sehingga 150 ppm. Ujian penentuan MWCO dijalankan menggunakan beberapa membran
komersial yang berbeza untuk mengesahkan kaedah baru diubahsuai ini didapati
bahawa nilai MWCO yang sama telah diperolehi bagi membran, seperti yang
diberikan oleh pengeluar membran. Kesimpulannya, kaedah yang baru diubahsuai
ini adalah lebih mudah daripada kaedah kalorimetri yang dahulunya digunakan,
boleh dipercayai dan diguna pakai bagi menentukan MWCO daripada membran NF
sehingga membran UF malah pada julat kepekatan PEG yang lebih tinggi.
Kata kunci: berat sekatan molekul, polietilena glikol, spektrofotometer, kolorimetri,
membran
References
1.
Alam, J., Dass, L. A., Alhoshan, M. S., Mostafa
Ghasemi and Mohammad, A. W. (2011). Development of polyaniline-modified polysulfone
nanocomposite membrane. Applied Water
Science, 2(1): 37 - 46.
2.
Zhao, Q., Quanfu, A. F., Ji, Y., Qian, J. and Gao, C. (2011).
Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel
cell applications. Journal of Membrane
Science, 379(1-2): 19 - 45.
3.
Prafulla, G. B., Sapkal, V. S. and Sapkal, R. S. (2012). The optimization
and production polyethersulfone ultrafiltration flat sheet membranes using
lithium chloride as additives. International
Journal of Engineering Research and Development 1(12): 65 - 68.
4.
Uludag, H., Paul, D.V. and Patrick, A. T. (2000). Technology
of mammalian cell encapsulation. Advanced
Drug Delivery Reviews, 42: 29 - 64.
5.
Derakhsheshpoor, R., Homayoonfal, M., Akbari, A. and Mehrnia,
M. R. (2013). Amoxicillin separation from pharmaceutical wastewater by high
permeability polysulfone nanofiltration membrane. Journal of Environmental Health Science and Engineering, 11(1): 9
- 19.
6.
Idris, A. and Zain, N. M. (2006). Effect of heat treatment on
the performance and structural details of polyethersulfone ultrafiltration
membranes. Jurnal Teknologi, 44: 27 -
40.
7.
Kim, K. J., Fanen, A. G., Ben Aimb, R., Liub, M. G., Jonsson,
G., Tessaro, C. I. C., Broekd, A. P. and Bargemand, D. (1994). A comparative
study of techniques used for porous membrane characterization: Pore characterization. Journal of Membrane Science, 87: 35 - 46.
8.
Nakao, S.-I. (1994). Review: Determination of pore size
distribution 3. Filtration membranes.
Journal of Membrane Science, 96: 131 - 165.
9.
Changzsheng, Z., Xuesong, Z. and Yilun, Y. (2000).
Determination of pore size and pore size distribution on the surface of
hollow-fiber filtration membranes: A review of methods. Desalination, 129: 107 - 123.
10.
Kang, E., Lee, Y., Chon, K. and Cho, J. (2014). Effects of
hydrodynamic conditions (diffusion vs. convection) and solution chemistry on
effective molecular weight cut-off of negatively charged nanofiltration
membranes. Desalination, 352: 136 - 141.
11.
Hassan, A. R. and Ismail, A. F. (2004). Characterization of
nanofiltration membranes by the solute transport method: some practical aspects
in determining of mean pore size and pore size distributions. Regional Symposium on Membrane Science and
Technology. Puteri Pan Pacific Hotel, Johor Bharu, Malaysia: pp. 1 - 13.
12.
Rohani, R., Hyland, M. and Patterson, D. (2011). A refined
one-filtration method for aqueous based nanofiltration and ultrafiltration
membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science, 382(1-2):
278 - 290.
13.
Felo, M. and DeFrees, S. (2012). Nucleotide Sugar Purification
using membranes in google patent. Novo Nordisk A/S, Bagsvaerd (DK): United
States. 27.
14.
Cheng, T. L., Chuang, K. H., Chen, B. M. and Roffler, S. R.
(2012). Analytical measurement of PEGylated molecules. Bioconjugate Chemistry, 23(5): 881 - 899.
15.
Kolate, A., Baradia, D., Patil, S., Vhora, I., Kore, G. and
Misra, A. (2014). PEG - A versatile conjugating ligand for drugs and drug
delivery systems. Journal of Control
Release, 192: 67 - 81.
16.
Sabde, A. D., Trivedi, M. K., Ramachandhran, V., Hanra, M. S.
and Misra, B. M. (1997). Casting and characterization of cellulose acetate
butyrate based UF membranes. Desalination,
114: 223 - 232.
17.
Idris, A., Mat Zain, N. and Noordin, M. Y. (2007). Synthesis,
characterization and performance of asymmetric polyethersulfone (PES)
ultrafiltration membranes with polyethylene glycol of different molecular
weights as additives. Desalination,
207(1-3): 324 - 339.
18.
Padaki, M., Isloor, A. M. and Wanichapichart, P. (2011).
Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection
application. Desalination, 279(1-3):
409 - 414.
19.
Prafulla, G. B., Sapkal, R. S. and Sapkal, V. S. (2008).
Influence of ethanol concentration on the performance of polyethersulfone
ultrafiltration membranes. International
Journal of ChemTech Research, 4(4): 1518 - 1521.
20.
Shirley, J., Mandale, S. and Kochkodan, V. (2014). Influence of
solute concentration and dipole moment on the rejection of uncharged molecules
with nanofiltration. Desalination,
344: 116 - 122.
21.
Fella, C. (2008). Dynamic and effective gene vectors via
ph-sensitive peg-shielding. Thesis Doctor of Philosophy. Faculty of
Chemistry and Pharmacy, Ludwig Maximilian University of Munich, Miltenberg.
22.
Christopher, B., Drewes, J. E., Pei, X. and Gary, A. (2004).
Factors affecting the rejection of organic solutes during NF/RO treatment - A
literature review. Water Research,
38: 2795 - 2809
23.
Bernadisiute, U., Antanelis, T., Vareikis, A. and Makuska, R.
(2008). Iodination of poly(ethylene glycol) by a mixture of triphenyl phosphite
and iodomethane. Chemija, 19(2): 43 -
49.
24.
Moulay, S. (2013). Molecular iodine/polymer complexes. Journal of Polymer Engineering, 33(5):
389 - 443.
25.
Shaffer, C. B. and Critchfield, F. H. (1947). Solid polyethylene
glycols (carbowax compounds) quantitative determination in biological
materials. Analytical Chemistry,
19(1): 32 - 35.
26.
Barker, T. H., Klinger, M. M., Feldman, D. S., Fuller, G. M.
and Hagood, J. S. (2001). Spectrophotometric analysis for determining the
average number of poly(ethylene) glycol molecules on PEGylated proteins
utilizing a protein digestion step. Analytical
Biochemistry, 290(2): 382 - 385.
27.
Lozzi,
I., Pucci, A., Pantani, O. L., D’Acqui, L. P. and Calamai, L. (2008). Interferences of suspended clay fraction in protein
quantitation by several determination methods. Analytical Biochemistry, 376: 108 - 114.
28.
Wuelfing, W. P., Kosuda, K., Templeton, A. C., Harman, A.,
Mowery, M. D. and Reed, R. A. (2006). Polysorbate 80 UV/vis spectral and
chromatographic characteristics – defining boundary conditions for use of the
surfactant in dissolution analysis.
Journal of Pharmaceutical and Biomedical Analysis, 41: 774 - 782.
29.
Tam, C. M. and Tremblay, A. Y. (1991). Membrane pore
characterization-comparison between single and multicomponent solute probe
techniques. Journal of Membrane Science,
57: 271 - 287.
30.
Rissler, K. (1996). High-performance liquid chromatography
and detection of polyethers and their mono(carboxy)alkyl and -arylalkyl
substituted derivatives. Journal of
Chromatography A, 742: 1 - 54.