Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 334 - 345

DOI: https://doi.org/10.17576/mjas-2017-2102-08

 

 

 

ISOTHERMAL MODELLING BASED EXPERIMENTAL STUDY OF DISSOLVED HYDROGEN SULFIDE ADSORPTION FROM WASTE WATER USING EGGSHELL BASED ACTIVATED CARBON

 

(Model Isoterma Berdasarkan Kajian Penjerapan Hidrogen Sulfida Terlarut daripada Air Sisa Menggunakan Karbon yang Diaktifkan Berasaskan Kulit Telur)

 

Omar Abed Habeeb1, Ramesh Kanthasamy1*, Gomaa Abdelgawad Mohammed Ali2,3, Rosli Mohd. Yunus1

 

1Faculty of Chemical Engineering & Natural Resources Engineering

2Faculty of Industrial Sciences and Technology

Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia

3Chemistry Department, Faculty of Science,

Al‒Azhar University, Assiut, 71524, Egypt

 

*Corresponding author: ramesh@ump.edu.my

 

 

Received: 8 June 2016; Accepted: 19 January 2017

 

 

Abstract

This paper reports on the experimental work using batch process conducted to determine the adsorption capacity of dissolved hydrogen sulfide in the synthetic wastewater onto the activated carbon which is derived from the eggshell. Fourier Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM), and particle size distribution have been used to characterize the prepared material. The raw materials of chicken eggshell are adopted to retrieve the carbon content which is then activated using KOH as the activation agent. The examined concentration of dissolved hydrogen sulfide is ranging from 100 to 500 ppm. The maximum adsorption capacity of the dissolved H2S onto the activated carbon is 289.3 mg/g and the equilibrium time is 6 hours. The examined pH value in this study is ranging from 4.5 to 5.5.  The two well-known equilibrium adsorption isotherm models, i.e. the Langmuir and the Freundlich models, are employed. It is found that the adsorption isotherm capacity agrees very well to the Freundlich isotherm model.  This paper attempts to show the difficulties of converting CaCO3 to carbon due to the fact that the raw material contains higher calcium (Ca) content instead of carbon. It is concluded that the carbon derived from the chickens’ eggshells is very beneficial for treatment of dissolved H2S in waste water.

 

Keywords:  adsorption, hydrogen sulfide, chicken eggshells, activated carbon, isotherm

 

Abstrak

Kajian ini melaporkan mengenai kerja eksperimen menggunakan proses kelompok yang dijalankan untuk menentukan kapasiti penjerapan hidrogen sulfida terlarut dalam air sisa sintetik ke dalam karbon yang diaktifkan dihasilkan daripada kulit telur. Spektroskopi Inframerah Fourier (FTIR),  Spektroskopi X-ray Tenaga Serakan (EDX), Mikroskop Imbasan Elektron (SEM), dan taburan saiz zarah telah digunakan untuk mencirikan bahan yang disediakan.  Kulit telur ayam sebagai bahan mentah telah digunakan untuk mendapatkan semula kandungan karbon yang kemudiannya diaktifkan dengan menggunakan KOH sebagai agen pengaktifan. Julat kepekatan hidrogen sulfida yang diperiksa adalah di antara 100 hingga 500 ppm. Kapasiti penjerapan maksimum H2S terlarut ke dalam karbon diaktifkan adalah 289.3 mg/g dan masa keseimbangan selama 6 jam. Julat nilai pH yang diperiksa dalam kajian ini di antara 4.5 hingga 5.5. Kedua-dua model penjerapan isoterma keseimbangan terkenal seperti model Freundlich dan Langmuir telah dilaksanakan. Kapasiti penjerapan isoterma didapati selari dengan model isoterma Langmuir. Kajian ini cuba menunjukkan kesukaran untuk menukar CaCO3 kepada karbon disebabkan oleh bahan mentah mengandungi kandungan kalsium (Ca) yang tinggi dan bukannya karbon. Ini dapat disimpulkan bahawa karbon yang diperolehi daripada kulit telur ayam adalah sangat bermanfaat untuk rawatan H2S terlarut dalam air sisa.

 

Kata Kunci:  penjerapan, hidrogen sulfida, kulit telur ayam, karbon diaktifkan, isoterma

 

References

1.       Patnaik, P. (2013). Handbook of inorganic chemicals. McGraw-Hill, New York.

2.       Vollertsen, J., Nielsen, A. H., Jensen, H. S., Wium-Andersen, T. and Hvitved-Jacobsen, T. (2008). Corrosion of concrete sewers – the kinetics of hydrogen sulfide oxidation. Science of The Total Environment, 394(1): 162 – 170.

3.       Agrahari, G. K., Rawat, A., Verma, N. and Bhattacharya, P. K. (2013). Removal of dissolved H2S from wastewater using hollow fiber membrane contactor: Experimental and mathematical analysis. Desalination, 314: 34 – 42.

4.       Ma, H., Cheng, X., Li, G., Chen, S., Quan, Z., Zhao, S. and Niu, L. (2000). The influence of hydrogen sulfide on corrosion of iron under different conditions. Corrosion Science, 42(10): 1669 – 1683.

5.       Skrtic, L. (2006). Hydrogen sulfide, oil and gas, and people’s health. Thesis Master, Universiti of California.  

6.       Lambert, T. W., Goodwin, V. M., Stefani, D. and Strosher, L. (2006). Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Science of The Total Environment, 367(1): 1 – 22.

7.       World Health Organization (2008). Guidelines for drinking-water quality: incorporating first and second addenda. WHO Press: pp. 185.

8.       Hughes, M. N., Centelles, M. N. and Moore, K. P. (2009). Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radical Biology and Medicine, 47(10): 1346 – 1353.

9.       Kularatne, K. I. A., Dissanayake, D. P. and Mahanama, K. R. R. (2003). Contribution of dissolved sulfates and sulfites in hydrogen sulfide emission from stagnant water bodies in Sri Lanka. Chemosphere, 52(5): 901 – 907.

10.    Yongsiri, C., Vollertsen, J. and Hvitved-Jacobsen, T. (2004). Effect of temperature on air-water transfer of hydrogen sulfide. Journal of Environmental Engineering, 130(1): 104 – 109.

11.    Heinonen, A. (2012). Adsorption of hydrogen sulfide by modified cellulose nano/microcrystals. Master Thesis, Lappeenranta University of Technology.

12.    Wesley Jr, E. W. (1980). Principles of water quality management. CBI Publishing Company Inc, Boston, USA.

13.    Xiao, Y., Wang, S., Wu, D. and Yuan, Q. (2008). Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions. Journal of Hazardous Materials, 153(3): 1193 – 1200.

14.    Yuan, W. and Bandosz, T. J. (2007). Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel, 86(17): 2736 – 2746.

15.    Guo, J., Luo, Y., Lua, A. C., Chi, R. A., Chen, Y. L., Bao, X. T. and Xiang, S. X. (2007). Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon, 45(2): 330 – 336.

16.    Wang, C. and Pei, Y. (2012). The removal of hydrogen sulfide in solution by ferric and alum water treatment residuals. Chemosphere, 88(10): 1178 – 1183.

17.    Wang, N., Park, J. and Ellis, T. G. (2013). The mechanism of hydrogen sulfide adsorption on fine rubber particle media (FRPM). Journal of Hazardous Materials, 260: 921 – 928.

18.    Asaoka, S., Yamamoto, T., Kondo, S. dan Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technology, 100(18): 4127 – 4132.

19.    Poulton, S. W., Krom, M. D., Van Rijn, J. and Raiswell, R. (2002). The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems. Water Research, 36(4): 825 – 834.

20.    Haddadian, Z., Shavandi, M. A., Abidin, Z. Z., Fakhru’l-Razi, A. and Ismail, M. H. S. (2013). Removal methyl orange from aqueous solutions using dragon fruit (Hylocereusundatus) foliage. Chemical Science Transactions, 2(3): 900 – 910.

21.    Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H. and Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology, 101(15): 6163 – 6169.

22.    Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A., Bandoch, G. F., Asefa, T., Visentainer, J. V. and Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chemical Engineering Journal, 260: 291 – 299.

23.    Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M. and Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132: 254 – 261.

24.    Gao, P., Liu, Z. H., Xue, G., Han, B. and Zhou, M. H. (2011). Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresource Technology, 102(3): 3645 – 3648.

25.    Pundir, C. S., Bhambi, M. and Chauhan, N. S. (2009). Chemical activation of egg shell membrane for covalent immobilization of enzymes and its evaluation as inert support in urinary oxalate determination. Talanta, 77(5): 1688 – 1693.

26.    Giraldo, L. and Moreno-Piraján, J. C. (2014). Study of adsorption of phenol on activated carbons obtained from eggshells. Journal of Analytical and Applied Pyrolysis, 106: 41 – 47.

27.    Silva, P. R., Ponte, H. A., Ponte, M. J. J. S. and Kaminari, N. M. S. (2011). Development of a new electrochemical methodology at carbon steel/Na2S system for corrosion monitoring in oil refineries. Journal of Applied Electrochemistry, 41(3): 317 – 320.

28.    Weber, T. W. and Chakravorti, R. K. (1974). Pore and solid diffusion models for fixedbed adsorbers. AIChE Journal, 20(2): 228 – 238.

29.    Weber, W. J. (1972). Physicochemical processes for water quality control. Wiley Interscience, New York: pp. 640.

30.    Abdel Ghafar, H. H., Ali, G. A. M., Fouad, O. A. and Makhlouf, S. A. (2015). Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 53(11), 2980 – 2989.

31.    Agarwal, S., Sadegh, H., Monajjemi, M., Hamdy, A. S., Ali, G. A. M., Memar, A. O., Shahryarighoshekandi, R., Tyagi, I. and Gupta, V. K. (2016). Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids, 218: 191 – 197.

32.    Choo, H. S., Lau, L. C., Mohamed, A. R. and Lee, K. T. (2013). Hydrogen sulfide adsorption by alka-line impregnated coconut shell activated carbon. Journal of Engineering Science and Technology, 8: 741 – 753.

33.    El-Geundi, M. S. (1991). Homogeneous surface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers. Adsorption Science & Technology, 8(4): 217 – 225.

34.    Xiao, Y., Wang, S., Wu, D. and Yuan, Q. (2008). Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon. Separation and Purification Technology, 59(3): 326 – 332.

35.    Sahu, R. C., Patel, R., and Ray, B. C. (2011). Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Processing Technology, 92(8): 1587 – 1592.

36.    Asaoka, S., Okamura, H., Morisawa, R., Murakami, H., Fukushi, K., Okajima, T., Katayama, M., Inada, Y., Yogi, C. and Ohta, T. (2013). Removal of hydrogen sulfide using carbonated steel slag. Chemical Engineering Journal, 228: 843–849.

37.    Kazmierczak-Razna, J., Gralak-Podemska, B., Nowicki, P. and Pietrzak, R. (2015). The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S. Chemical Engineering Journal, 269: 352 – 358.

 




Previous                    Content                    Next