Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 334 - 345
DOI:
https://doi.org/10.17576/mjas-2017-2102-08
ISOTHERMAL MODELLING BASED EXPERIMENTAL STUDY OF
DISSOLVED HYDROGEN SULFIDE ADSORPTION FROM WASTE WATER USING EGGSHELL BASED
ACTIVATED CARBON
(Model Isoterma
Berdasarkan Kajian Penjerapan Hidrogen Sulfida Terlarut daripada Air Sisa
Menggunakan Karbon yang Diaktifkan Berasaskan Kulit Telur)
Omar Abed Habeeb1,
Ramesh Kanthasamy1*, Gomaa Abdelgawad Mohammed Ali2,3,
Rosli Mohd. Yunus1
1Faculty of Chemical Engineering & Natural Resources Engineering
2Faculty of Industrial Sciences and Technology
Universiti
Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
3Chemistry Department, Faculty of Science,
Al‒Azhar
University, Assiut, 71524, Egypt
*Corresponding author: ramesh@ump.edu.my
Received: 8
June 2016; Accepted: 19 January 2017
Abstract
This paper
reports on the experimental work using batch process conducted to determine the
adsorption capacity of dissolved hydrogen sulfide in the synthetic wastewater
onto the activated carbon which is derived from the eggshell. Fourier Transform
Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray Spectroscopy (EDX),
Scanning Electron Microscopy (SEM), and particle size distribution have been
used to characterize the prepared material. The raw materials of chicken
eggshell are adopted to retrieve the carbon content which is then activated
using KOH as the activation agent. The examined concentration of dissolved
hydrogen sulfide is ranging from 100 to 500 ppm. The maximum adsorption
capacity of the dissolved H2S onto the activated carbon is 289.3
mg/g and the equilibrium time is 6 hours. The examined pH value in this study
is ranging from 4.5 to 5.5. The two
well-known equilibrium adsorption isotherm models, i.e. the Langmuir and the
Freundlich models, are employed. It is found that the adsorption isotherm
capacity agrees very well to the Freundlich isotherm model. This paper attempts to show the difficulties
of converting CaCO3 to carbon due to the fact that the raw material
contains higher calcium (Ca) content instead of carbon. It is concluded that
the carbon derived from the chickens’ eggshells is very beneficial for
treatment of dissolved H2S in waste water.
Keywords: adsorption, hydrogen sulfide, chicken eggshells, activated
carbon, isotherm
Abstrak
Kajian ini
melaporkan mengenai kerja eksperimen menggunakan proses kelompok yang
dijalankan untuk menentukan kapasiti penjerapan hidrogen sulfida terlarut dalam
air sisa sintetik ke dalam karbon yang diaktifkan dihasilkan daripada kulit
telur. Spektroskopi Inframerah Fourier (FTIR),
Spektroskopi X-ray Tenaga Serakan (EDX), Mikroskop Imbasan Elektron
(SEM), dan taburan saiz zarah telah digunakan untuk mencirikan bahan yang
disediakan. Kulit telur ayam sebagai bahan
mentah telah digunakan untuk mendapatkan semula kandungan karbon yang
kemudiannya diaktifkan dengan menggunakan KOH sebagai agen pengaktifan. Julat
kepekatan hidrogen sulfida yang diperiksa adalah di antara 100 hingga 500 ppm.
Kapasiti penjerapan maksimum H2S terlarut ke dalam karbon diaktifkan
adalah 289.3 mg/g dan masa keseimbangan selama 6 jam. Julat nilai pH yang
diperiksa dalam kajian ini di antara 4.5 hingga 5.5. Kedua-dua model penjerapan
isoterma keseimbangan terkenal seperti model Freundlich dan Langmuir telah
dilaksanakan. Kapasiti penjerapan isoterma didapati selari dengan model isoterma
Langmuir. Kajian ini cuba menunjukkan kesukaran untuk menukar CaCO3
kepada karbon disebabkan oleh bahan mentah mengandungi kandungan kalsium (Ca)
yang tinggi dan bukannya karbon. Ini dapat disimpulkan bahawa karbon yang
diperolehi daripada kulit telur ayam adalah sangat bermanfaat untuk rawatan H2S
terlarut dalam air sisa.
Kata Kunci: penjerapan, hidrogen sulfida, kulit telur ayam, karbon
diaktifkan, isoterma
References
1.
Patnaik, P. (2013). Handbook of inorganic chemicals.
McGraw-Hill, New York.
2.
Vollertsen, J., Nielsen, A. H., Jensen, H. S.,
Wium-Andersen, T. and Hvitved-Jacobsen, T. (2008). Corrosion of concrete sewers
– the kinetics of hydrogen sulfide oxidation. Science of The Total
Environment, 394(1): 162 – 170.
3.
Agrahari, G. K., Rawat, A., Verma, N. and
Bhattacharya, P. K. (2013). Removal of dissolved H2S from wastewater
using hollow fiber membrane contactor: Experimental and mathematical analysis. Desalination,
314: 34 – 42.
4.
Ma, H., Cheng, X., Li, G., Chen, S., Quan, Z., Zhao,
S. and Niu, L. (2000). The influence of hydrogen sulfide on corrosion of iron
under different conditions. Corrosion Science, 42(10): 1669 – 1683.
5.
Skrtic, L. (2006). Hydrogen sulfide, oil and gas,
and people’s health. Thesis Master, Universiti of California.
6.
Lambert, T. W., Goodwin, V. M., Stefani, D. and
Strosher, L. (2006). Hydrogen sulfide (H2S) and sour gas effects on
the eye. A historical perspective. Science of The Total Environment,
367(1): 1 – 22.
7.
World Health Organization (2008). Guidelines for
drinking-water quality: incorporating first and second addenda. WHO Press: pp.
185.
8.
Hughes, M. N., Centelles, M. N. and Moore, K. P.
(2009). Making and working with hydrogen sulfide: the chemistry and generation
of hydrogen sulfide in vitro and its measurement in vivo: a review. Free
Radical Biology and Medicine, 47(10): 1346 – 1353.
9.
Kularatne, K. I. A., Dissanayake, D. P. and
Mahanama, K. R. R. (2003). Contribution of dissolved sulfates and sulfites in
hydrogen sulfide emission from stagnant water bodies in Sri Lanka. Chemosphere,
52(5): 901 – 907.
10.
Yongsiri, C., Vollertsen, J. and Hvitved-Jacobsen,
T. (2004). Effect of temperature on air-water transfer of hydrogen sulfide. Journal
of Environmental Engineering, 130(1): 104 – 109.
11.
Heinonen, A. (2012). Adsorption of hydrogen sulfide
by modified cellulose nano/microcrystals. Master Thesis, Lappeenranta
University of Technology.
12.
Wesley Jr, E. W. (1980). Principles of water quality
management. CBI Publishing Company Inc, Boston, USA.
13.
Xiao, Y., Wang, S., Wu, D. and Yuan, Q. (2008).
Experimental and simulation study of hydrogen sulfide adsorption on impregnated
activated carbon under anaerobic conditions. Journal of Hazardous Materials,
153(3): 1193 – 1200.
14.
Yuan, W. and Bandosz, T. J. (2007). Removal of
hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel, 86(17):
2736 – 2746.
15.
Guo, J., Luo, Y., Lua, A. C., Chi, R. A., Chen, Y.
L., Bao, X. T. and Xiang, S. X. (2007). Adsorption of hydrogen sulphide (H2S)
by activated carbons derived from oil-palm shell. Carbon, 45(2): 330 –
336.
16.
Wang, C. and Pei, Y. (2012). The removal of hydrogen
sulfide in solution by ferric and alum water treatment residuals. Chemosphere,
88(10): 1178 – 1183.
17.
Wang, N., Park, J. and Ellis, T. G. (2013). The
mechanism of hydrogen sulfide adsorption on fine rubber particle media (FRPM). Journal
of Hazardous Materials, 260: 921 – 928.
18.
Asaoka, S., Yamamoto, T., Kondo, S. dan Hayakawa, S.
(2009). Removal of hydrogen sulfide using crushed oyster shell from pore water
to remediate organically enriched coastal marine sediments. Bioresource
Technology, 100(18): 4127 – 4132.
19.
Poulton, S. W., Krom, M. D., Van Rijn, J. and
Raiswell, R. (2002). The use of hydrous iron (III) oxides for the removal of
hydrogen sulphide in aqueous systems. Water Research, 36(4): 825 – 834.
20.
Haddadian, Z., Shavandi, M. A., Abidin, Z. Z.,
Fakhru’l-Razi, A. and Ismail, M. H. S. (2013). Removal methyl orange from
aqueous solutions using dragon fruit (Hylocereusundatus) foliage. Chemical
Science Transactions, 2(3): 900 – 910.
21.
Yang, K., Peng, J., Srinivasakannan, C., Zhang, L.,
Xia, H. and Duan, X. (2010). Preparation of high surface area activated carbon
from coconut shells using microwave heating. Bioresource Technology, 101(15): 6163 – 6169.
22.
Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin,
K. C., Yamazaki, D. A., Bandoch, G. F., Asefa, T., Visentainer, J. V. and
Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon
produced from macadamia nut shells: kinetic and equilibrium studies. Chemical Engineering Journal, 260: 291 –
299.
23.
Farma, R., Deraman, M., Awitdrus, A., Talib, I. A.,
Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M. and
Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon
electrodes from fibres of oil palm empty fruit bunches for application in
supercapacitors. Bioresource Technology,
132: 254 – 261.
24.
Gao, P., Liu, Z. H., Xue, G., Han, B. and Zhou, M.
H. (2011). Preparation and characterization of activated carbon produced from
rice straw by (NH4)2HPO4 activation. Bioresource Technology, 102(3): 3645 –
3648.
25.
Pundir, C. S., Bhambi, M. and Chauhan, N. S. (2009).
Chemical activation of egg shell membrane for covalent immobilization of
enzymes and its evaluation as inert support in urinary oxalate determination. Talanta, 77(5): 1688 – 1693.
26.
Giraldo, L. and Moreno-Piraján, J. C. (2014). Study
of adsorption of phenol on activated carbons obtained from eggshells. Journal of Analytical and Applied Pyrolysis,
106: 41 – 47.
27.
Silva, P. R., Ponte, H. A., Ponte, M. J. J. S. and
Kaminari, N. M. S. (2011). Development of a new electrochemical methodology at
carbon steel/Na2S system for corrosion monitoring in oil refineries. Journal of Applied Electrochemistry,
41(3): 317 – 320.
28.
Weber, T. W. and Chakravorti, R. K. (1974). Pore and
solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20(2): 228 – 238.
29.
Weber, W. J. (1972). Physicochemical processes for
water quality control. Wiley Interscience, New York: pp. 640.
30.
Abdel Ghafar, H. H., Ali, G. A. M., Fouad, O. A. and
Makhlouf, S. A. (2015). Enhancement of adsorption efficiency of methylene blue
on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment,
53(11), 2980 – 2989.
31.
Agarwal, S., Sadegh, H., Monajjemi, M., Hamdy, A.
S., Ali, G. A. M., Memar, A. O., Shahryarighoshekandi, R., Tyagi, I. and Gupta, V.
K. (2016). Efficient removal of toxic bromothymol blue and methylene blue from
wastewater by polyvinyl alcohol. Journal
of Molecular Liquids, 218: 191 – 197.
32.
Choo, H. S., Lau, L. C., Mohamed, A. R. and Lee, K.
T. (2013). Hydrogen sulfide adsorption by alka-line impregnated coconut shell
activated carbon. Journal of Engineering
Science and Technology, 8: 741 – 753.
33.
El-Geundi, M. S. (1991). Homogeneous surface diffusion model
for the adsorption of basic dyestuffs onto natural clay in batch adsorbers. Adsorption
Science & Technology, 8(4): 217 – 225.
34.
Xiao, Y., Wang, S., Wu, D. and Yuan, Q. (2008). Catalytic
oxidation of hydrogen sulfide over unmodified and impregnated activated carbon.
Separation and Purification Technology, 59(3): 326 – 332.
35.
Sahu, R. C., Patel, R., and Ray, B. C. (2011). Removal of
hydrogen sulfide using red mud at ambient conditions. Fuel Processing Technology, 92(8): 1587 – 1592.
36.
Asaoka, S., Okamura, H.,
Morisawa, R., Murakami, H., Fukushi, K., Okajima, T., Katayama, M., Inada, Y.,
Yogi, C. and Ohta, T. (2013). Removal of hydrogen sulfide using carbonated
steel slag. Chemical Engineering Journal, 228: 843–849.
37.
Kazmierczak-Razna, J., Gralak-Podemska, B., Nowicki,
P. and Pietrzak, R. (2015). The use of microwave radiation for obtaining
activated carbons from sawdust and their potential application in removal of NO2
and H2S. Chemical Engineering
Journal, 269: 352 – 358.