Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 323 - 333
DOI:
https://doi.org/10.17576/mjas-2017-2102-07
THE SYNTHESIS
OF ZINC OXIDE/CARBON SPHERES NANOCOMPOSITES AND FIELD ELECTRON EMISSION
PROPERTIES
(Sintesis Nanokomposit Zink Oksida/Sfera Karbon dan
Sifat Pemancaran Elektron Medan)
Suriani Abu Bakar1,2*, Suhufa
Alfarisa1,2,3, Azmi Mohamed1,4, Norhayati Hashim1,4
1Nanotechnology Research Centre, Faculty of Science
and Mathematics
2Department of Physics, Faculty of Science and
Mathematics
Universiti
Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
3Department of Physics, Faculty of Mathematics and Natural Science,
Universitas PGRI Palembang,
Jl. Jend Ahmad Yani 9/10 Ulu, Palembang 30251, South Sumatera, Indonesia
4Department of Chemistry, Faculty of Science and
Mathematics,
Universiti
Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
*Corresponding author: absuriani@yahoo.com
Received:
19 November 2016; Accepted: 6 March 2017
Abstract
Zinc oxide (ZnO)/carbon spheres (CS)
nanocomposites were successfully synthesised using waste engine oil as
precursor for the CS production. ZnO nanorods were grown using sol-gel
immersion method with MgZnO as the seeded catalyst and thermal chemical vapour
deposition was used to synthesise CS. Different configurations of ZnO/CS
structures were prepared i.e. CS-coated ZnO and ZnO-coated CS. The structures
of composite samples were analysed using field emission scanning electron
microscopy (FESEM), Energy-Dispersive X-ray (EDX), micro-Raman and X-ray
Diffraction Spectroscopy (XRD). FESEM observations revealed the structural
changes of pristine ZnO and CS in composite structures. The as-present of ZnO
or CS was believed to affect the subsequent growth of another structure. Field
electron emission (FEE) properties of both nanocomposites were also investigated.
It was found that ZnO-coated CS sample has better FEE properties with lower
turn-on (3.48 Vµm-1) and threshold field (6.35 Vµm-1)
obtained at current density of 0.1 and 1 µAcm-2, respectively. This
study highlighted that nanocomposites of ZnO and CS have successfully enhanced
the field emission performances of materials compared with pristine ZnO or CS
due to the structural changes of material emitter.
Keywords: zinc oxide, carbon spheres, waste engine
oil, field electron emission
Abstrak
Nanokomposit zink
oksida (ZnO)/sfera karbon (SK) telah berjaya disintesis menggunakan minyak
enjin terpakai sebagai pelopor untuk penghasilan SK. Nanorod ZnO telah
ditumbuhkan menggunakan kaedah rendaman sol-gel dengan MgZnO sebagai pemangkin
berbenih dan pemendapan wap kimia terma telah digunakan untuk mensintesis SK.
Konfigurasi yang berlainan bagi struktur ZnO/SK telah disediakan iaitu SK
bersalut ZnO dan ZnO bersalut SK. Struktur sampel komposit dianalisis
menggunakan Mikroskop Imbasan Elektron Pancaran Medan (FESEM),
penyerakan tenaga sinar-X (EDX), spektroskopi mikro-Raman dan pembelauan
sinar-X (XRD). Pemerhatian
FESEM menunjukkan perubahan struktur ZnO dan CS tulen dalam struktur komposit.
ZnO atau CS sedia ada dipercayai memberi kesan kepada pertumbuhan seterusnya
struktur lain. Sifat pemancaran
elektron medan (PEM) bagi kedua-dua nanokomposit juga turut dikaji. Kajian
mendapati bahawa sampel ZnO bersalut SK mempunyai ciri-ciri PEM yang lebih baik
dengan nilai medan permulaan (3.48 Vμm-1) dan
ambang (6.35 Vμm-1) yang lebih rendah diperolehi pada ketumpatan arus 0.1 dan 1
μAcm-2. Kajian ini menekankan nanokomposit ZnO dan SK telah berjaya
meningkatkan prestasi pemancaran medan bahan berbanding dengan ZnO atau CS tulen disebabkan oleh perubahan
struktur bahan pemancar.
Kata kunci: zink oksida, sfera karbon, minyak enjin terpakai, pemancaran elektron medan
References
1.
Patra,
R., Ghosh, S., Sharma, H. and Vankar V. D. (2013). High stability field
emission from zinc oxide coated multiwalled carbon nanotube films. Advanced Materials Letters, 4 (11):
849 – 855.
2.
Fowler,
R. H. and Nordheim, L. (1928). Electron emission in intense electric fields. Proceedings of the Royal
Society of London. Series A, 119 (781): 173 – 18.
3.
Leong, J. G. S. (2008). Controlled growth of
uniform diameter multiwall carbon nanotube arrays via chemical vapor deposition
for application in field emission devices. Master Thesis Northeastern
University, Boston, Massachusetts, USA.
4.
Ghosh, P., Subramanian, M., Afre, R. A., Zamri, M.,
Soga, T., Jimbo, T., Filip, V. and Tanemura, M. (2009). Growth of Y-junction
bamboo-shaped CNx Nanotubes on GaAs substrate using single feedstock. Applied Surface
Science, 255(8): 4611 – 4615.
5.
Ghosh, P., Zamri, M., Subramanian, M., Soga, T.,
Jimbo, T., Katoh, R. and Tanemura, M. (2008). Bamboo-shaped aligned CNx
nanotubes synthesized using single feedstock at different temperature and study
of their field electron emission. Journal of Physics D: Applied
Physics, 41
(15): 155405 – 155412.
6.
Srivastava, S. K., Vankar, V. D., Sridhar Rao, D.
V. and Kumar, V. (2006). Enhanced field emission characteristics of
nitrogen-doped carbon nanotube films grown by microwave plasma enhanced
chemical vapor deposition process. Thin Solid Films, 515: 1851 – 1856.
7.
Hu, H., Zhang,
D., Liu, Y., Yu, W. and Guo, T. (2015). Highly enhanced field emission from CuO
nanowire arrays by coating of carbon nanotube network films. Vacuum, 115: 70
– 74.
8.
Yan, X., Tay, B.
K. and Miele, P. (2008). Field
emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 46: 753
– 758.
9.
Cai, D. and Liu,
L. (2013). The
screening effects of carbon nanotube arrays and its field emission optimum
density. AIP Advances, 3 (12): 122103.
10.
Heo, Y. W.,
Tien, L. C., Kwon, Y., Norton, D. P., Pearton, S. J., Kang, B. S. and
Ren, F. (2004). Depletion-mode ZnO
nanowire field-effect transistor. Applied
Physics Letters, 85 (12): 2274 – 2276.
11.
Suriani,
A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Malek, M. F., Soga, T. and Tanemura, M. (2016). Fabrication of
vertically aligned carbon nanotubes–zinc oxide nanocomposites and their field
electron emission enhancement. Materials Design, 90: 185 – 195.
12.
Suriani, A. B., Safitri,
R. N., Mohamed, A., Alfarisa, S., Isa, I. M., Kamari, A., Hashim, N., Ahmad, M.
K., Malek, M. F. and Rusop M. (2015). Enhanced field electron emission of
flower-like zinc oxide on zinc oxide nanorods grown on carbon nanotubes. Materials Letters, 149: 66 – 69.
13.
Suriani,
A. B., Safitri, R. N., Mohamed, A., Alfarisa, S., Malek, M. F., Mamat, M. H.
and Ahmad M. K. (2016). Synthesis and field electron emission properties of
waste cooking palm oil-based carbon nanotubes coated on different zinc oxide
nanostructures. Journal of Alloys and Compounds, 656: 368 –377.
14.
Dutta,
M. and Basak, D. (2019). Multiwalled carbon nanotubes/ZnO nanowires composite
structure with enhanced ultraviolet emission and faster ultraviolet response. Chemical
Physics Letters, 480(4-6): 253 –257.
15.
Flickyngerová,
S., Tvarožek, V. and Gašpierik, P. (2010). Zinc oxide - A unique material for
advanced photovoltaic solar cells. Journal of Electrical Engineering,
61(5): 291 – 295.
16.
Nohavica,
D. and Gladkov. P. (2010). ZnO nanoparticles and their applications-new
achievements. Proceedings of the 2nd International Conference on
Nanotechnology, 10: 12 – 14.
17.
Vaseem,
M., Umar, A. and Hahn, Y. B. (2010). ZnO nanoparticles: Growth, properties, and
applications. American Scientific Publishers, New York: pp. 1 – 36.
18.
Jin,
H., Li, Y., Li, J. and Gu, C. (2009). Field emission from ZnO nanostructures
with different morphologies. Microelectronic Engineering, 86
(4): 1159 – 1161.
19.
Mamat,
M. H., Khusaimi, Z., Zahidi, M. M., Suriani, A. B., Siran, Y. M., Rejab, S. A.
M., Asis, A. J., Tahiruddin, S., Abdullah, S. and Rusop M. (2011). Controllable
growth of vertically aligned aluminum-doped zinc oxide nanorod arrays by
sonicated sol–gel immersion method depending on precursor solution. Japanese Journal of Applied
Physics, 50: 1 – 6.
20.
Banerjee,
D., Sen, D. and Chattopadhyay, K. K. (2013). Simple chemical synthesis of
porous carbon spheres and its improved field emission by water vapor adsorption.
Microporous and Mesoporous Materials, 171: 201 – 207.
21.
Suriani,
A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari. A., Hashim, N., Mamat, M.
H., Mohamed, A. R. and M. Rusop, M. (2015). Quasi-aligned carbon nanotubes
synthesised from waste engine oil. Materials Letters, 139: 220 – 223.
22.
Suriani,
A. B., Alfarisa, S., Mohamed, A., Kamari. A., Hashim, N., Isa, I. M., Mamat, M.
H., Malek, M. F. and Ahmad, M. K. (2015). Amorphous Al–Cu alloy nanowires
decorated with carbon spheres synthesised from waste engine oil. Journal of
Alloys and Compounds, 642: 111 – 116.
23.
Suriani, A. B., Nor, R. M. and Rusop, M. (2010). Vertically aligned carbon
nanotubes synthesized from waste cooking palm oil. Journal
Ceramic Society Japan, 118:
963 – 968.
24.
Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat,
M. H., Salina, M., Rosmi M. S., Rosly, J., Nor, R. M. and Rusop, M. (2013),
Vertically aligned carbon nanotubes synthesized from waste chicken fat. Materials Letters, 101: 61 – 64.
25.
Suriani,
A. B., Dalila, A. R., Mohamed, A., Isa, I. M., Kamari, A., Hashim, N., Soga, T. and Tanemura, M. (2015). Synthesis of
carbon nanofibres from waste chicken fat for field electron emission
applications. Materials Research Bulletin, 70: 524 – 529.
26.
Suriani,
A. B., Norhafizah, J., Mohammed, A., Mamat, M. H., Malek, M. F. and Ahmad, M.
K. (2016). Scaled-up prototype of carbon nanotube production system utilizing
waste cooking palm oil precursor and its nanocomposite application as
supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 27(11):
11599 – 11605.
27.
Suriani, A. B., Dalila, A. R., Mohamed, A., Soga, T. and Tanemura, M. (2015). Synthesis,
structural, and field electron emission properties of quasi-aligned carbon
nanotubes from gutter oil. Materials
Chemistry and Physics, 165: 1 – 7.
28.
Azmina,
M. S., Suriani, A. B., Falina, A. N., Salina, M. and Rusop, M. (2012).
Temperature effects on the production of carbon nanotubes from palm oil by
thermal chemical vapor deposition method. Advanced Materials Research, 364: 359 – 362.
29.
Azmina, M. S., Suriani, A. B., Falina, A. N.,
Salina, M., Rosly, J. and Rusop, M. (2012). Preparation of palm oil based carbon
nanotubes at various ferrocene concentration. Advanced Materials Research, 364: 408 – 441.
30.
Shamsudin,
M. S., Suriani, A. B., Abdullah, S., Yahya, S. Y. S. and Rusop, M. (2013).
Impact of thermal annealing under nitrogen ambient on structural, micro-raman,
and thermogravimetric analyses of camphoric-CNT. Journal of Spectroscopy,
2013: 1 – 7.
31.
Azmina,
M. S., Suriani, A. B., Salina, M., Azira, A. A., Dalila, A. R., Asli, N. A.,
Rosly, J., Nor, R. M. and Rusop, M. (2012). Variety of bio-hydrocarbon
precursors for the synthesis of carbon nanotubes. Nano Hybrids, 2: 43 –
63.
32.
Zobir,
S. A. M., Bakar, S. A., Abdullah, S., Zainal, Z., Sarijo, S. H. and Rusop, M.
(2012). Raman spectroscopic study of carbon nanotubes prepared using
Fe/ZnO-palm olein-chemical vapour deposition. Journal of Nanomaterials,
2012: 1 – 6.
33.
Asli,
N. A., Shamsudin, M. S., Suriani, A. B., Rusop, M. and Abdullah, S. (2013). Effect
of the ratio of catalyst to carbon source on the growth of vertically aligned
carbon nanotubes on nanostructured porous silicon templates. International Journal of Industrial
Chemistry,
4(23): 1 – 7.
34.
Asli,
N. A., Shamsudin, M. S., Falina, A. N., Azmina, M. S., Suriani, A. B., Rusop,
M. and Abdullah, S. (2013). Field electron emission properties of vertically
aligned carbon nanotubes deposited on a nanostructured porous silicon template:
the hidden role of the hydrocarbon/catalyst ratio. Microelectronic Engineering, 108: 86 – 92.
35.
Suriani,
A. B., Azira, A. A., Nik, S. F., Nor R. M. and Rusop, M. (2009). Synthesis of
vertically aligned carbon nanotubes using natural palm oil as carbon precursor.
Materials Letters, 63(30): 2704 – 2706.
36.
Shamsudin,
M. S., Achoi, M. F., Asiah, M. N., Ismail, L. N., Suriani, A. B., Abdullah, S.,
Yahya, S. Y. S. and Rusop, M. (2012). Synthesis and nucleation-growth
mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled
sphere-like graphene-shell surface. Journal of Nanostructure in Chemistry, 3(13): 1 – 12.
37.
Salina,
M., Ahmad, R., Suriani, A. B. and Rusop, M. (2012). Bandgap alteration of
transparent zinc oxide thin film with Mg dopant. Transactions
on Electrical and Electronic
Materials, 13(2): 64 – 68.
38.
Wu,
X., Wei, Z., Zhang, L., Wang, X., Yang, H. and Jiang, J. (2014). Optical and
magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal
synthesis. Journal of Nanomaterials, 2014: 1 – 6.