Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 323 - 333

DOI: https://doi.org/10.17576/mjas-2017-2102-07

 

 

 

THE SYNTHESIS OF ZINC OXIDE/CARBON SPHERES NANOCOMPOSITES AND FIELD ELECTRON EMISSION PROPERTIES

 

(Sintesis Nanokomposit Zink Oksida/Sfera Karbon dan Sifat Pemancaran Elektron Medan)

 

Suriani Abu Bakar1,2*, Suhufa Alfarisa1,2,3, Azmi Mohamed1,4, Norhayati Hashim1,4

 

1Nanotechnology Research Centre, Faculty of Science and Mathematics

2Department of Physics, Faculty of Science and Mathematics

Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

3Department of Physics, Faculty of Mathematics and Natural Science,

Universitas PGRI Palembang, Jl. Jend Ahmad Yani 9/10 Ulu, Palembang 30251, South Sumatera, Indonesia

4Department of Chemistry, Faculty of Science and Mathematics,

Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

 

*Corresponding author: absuriani@yahoo.com

 

 

Received: 19 November 2016; Accepted: 6 March 2017

 

 

Abstract

Zinc oxide (ZnO)/carbon spheres (CS) nanocomposites were successfully synthesised using waste engine oil as precursor for the CS production. ZnO nanorods were grown using sol-gel immersion method with MgZnO as the seeded catalyst and thermal chemical vapour deposition was used to synthesise CS. Different configurations of ZnO/CS structures were prepared i.e. CS-coated ZnO and ZnO-coated CS. The structures of composite samples were analysed using field emission scanning electron microscopy (FESEM), Energy-Dispersive X-ray (EDX), micro-Raman and X-ray Diffraction Spectroscopy (XRD). FESEM observations revealed the structural changes of pristine ZnO and CS in composite structures. The as-present of ZnO or CS was believed to affect the subsequent growth of another structure. Field electron emission (FEE) properties of both nanocomposites were also investigated. It was found that ZnO-coated CS sample has better FEE properties with lower turn-on (3.48 Vµm-1) and threshold field (6.35 Vµm-1) obtained at current density of 0.1 and 1 µAcm-2, respectively. This study highlighted that nanocomposites of ZnO and CS have successfully enhanced the field emission performances of materials compared with pristine ZnO or CS due to the structural changes of material emitter.

 

Keywords:  zinc oxide, carbon spheres, waste engine oil, field electron emission

 

Abstrak

Nanokomposit zink oksida (ZnO)/sfera karbon (SK) telah berjaya disintesis menggunakan minyak enjin terpakai sebagai pelopor untuk penghasilan SK. Nanorod ZnO telah ditumbuhkan menggunakan kaedah rendaman sol-gel dengan MgZnO sebagai pemangkin berbenih dan pemendapan wap kimia terma telah digunakan untuk mensintesis SK. Konfigurasi yang berlainan bagi struktur ZnO/SK telah disediakan iaitu SK bersalut ZnO dan ZnO bersalut SK. Struktur sampel komposit dianalisis menggunakan Mikroskop Imbasan Elektron Pancaran Medan (FESEM), penyerakan tenaga sinar-X (EDX), spektroskopi mikro-Raman dan  pembelauan sinar-X (XRD). Pemerhatian FESEM menunjukkan perubahan struktur ZnO dan CS tulen dalam struktur komposit. ZnO atau CS sedia ada dipercayai memberi kesan kepada pertumbuhan seterusnya struktur lain. Sifat pemancaran elektron medan (PEM) bagi kedua-dua nanokomposit juga turut dikaji. Kajian mendapati bahawa sampel ZnO bersalut SK mempunyai ciri-ciri PEM yang lebih baik dengan nilai medan permulaan (3.48 Vμm-1) dan ambang (6.35 Vμm-1) yang lebih rendah diperolehi pada ketumpatan arus 0.1 dan 1 μAcm-2. Kajian ini menekankan nanokomposit ZnO dan SK telah berjaya meningkatkan prestasi pemancaran medan bahan berbanding dengan  ZnO atau CS tulen disebabkan oleh perubahan struktur bahan pemancar.

 

Kata kunci:  zink oksida, sfera karbon, minyak enjin terpakai, pemancaran elektron medan

 

References

1.       Patra, R., Ghosh, S., Sharma, H. and Vankar V. D. (2013). High stability field emission from zinc oxide coated multiwalled carbon nanotube films.  Advanced Materials Letters, 4 (11): 849 – 855.

2.       Fowler, R. H. and Nordheim, L. (1928). Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, 119 (781): 173 – 18.

3.       Leong, J. G. S. (2008). Controlled growth of uniform diameter multiwall carbon nanotube arrays via chemical vapor deposition for application in field emission devices. Master Thesis Northeastern University, Boston, Massachusetts, USA.

4.       Ghosh, P., Subramanian, M., Afre, R. A., Zamri, M., Soga, T., Jimbo, T., Filip, V. and Tanemura, M. (2009). Growth of Y-junction bamboo-shaped CNx Nanotubes on GaAs substrate using single feedstock. Applied Surface Science, 255(8): 4611 – 4615.

5.       Ghosh, P., Zamri, M., Subramanian, M., Soga, T., Jimbo, T., Katoh, R. and Tanemura, M. (2008). Bamboo-shaped aligned CNx nanotubes synthesized using single feedstock at different temperature and study of their field electron emission. Journal of Physics D: Applied Physics, 41 (15): 155405 – 155412.

6.       Srivastava, S. K., Vankar, V. D., Sridhar Rao, D. V. and Kumar, V. (2006). Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films, 515: 1851 – 1856.

7.       Hu, H., Zhang, D., Liu, Y., Yu, W. and Guo, T. (2015). Highly enhanced field emission from CuO nanowire arrays by coating of carbon nanotube network films. Vacuum, 115: 70 – 74.

8.       Yan, X., Tay, B. K. and Miele, P. (2008). Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 46: 753 – 758.

9.       Cai, D. and Liu, L. (2013). The screening effects of carbon nanotube arrays and its field emission optimum density. AIP Advances, 3 (12): 122103.

10.    Heo, Y. W., Tien, L. C., Kwon, Y., Norton, D. P., Pearton, S. J., Kang, B. S. and Ren, F. (2004). Depletion-mode ZnO nanowire field-effect transistor. Applied Physics Letters, 85 (12): 2274 – 2276.

11.    Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Malek, M. F., Soga, T. and Tanemura, M. (2016). Fabrication of vertically aligned carbon nanotubes–zinc oxide nanocomposites and their field electron emission enhancement. Materials Design, 90: 185 – 195.

12.    Suriani, A. B., Safitri, R. N., Mohamed, A., Alfarisa, S., Isa, I. M., Kamari, A., Hashim, N., Ahmad, M. K., Malek, M. F. and Rusop M. (2015). Enhanced field electron emission of flower-like zinc oxide on zinc oxide nanorods grown on carbon nanotubes. Materials Letters, 149: 66 – 69.

13.    Suriani, A. B., Safitri, R. N., Mohamed, A., Alfarisa, S., Malek, M. F., Mamat, M. H. and Ahmad M. K. (2016). Synthesis and field electron emission properties of waste cooking palm oil-based carbon nanotubes coated on different zinc oxide nanostructures. Journal of Alloys and Compounds, 656: 368 –377.

14.    Dutta, M. and Basak, D. (2019). Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet response. Chemical Physics Letters, 480(4-6): 253 –257.

15.    Flickyngerová, S., Tvarožek, V. and Gašpierik, P. (2010). Zinc oxide - A unique material for advanced photovoltaic solar cells. Journal of Electrical Engineering, 61(5): 291 – 295.

16.    Nohavica, D. and Gladkov. P. (2010). ZnO nanoparticles and their applications-new achievements. Proceedings of the 2nd International Conference on Nanotechnology, 10: 12 – 14.

17.    Vaseem, M., Umar, A. and Hahn, Y. B. (2010). ZnO nanoparticles: Growth, properties, and applications. American Scientific Publishers, New York: pp. 1 – 36.

18.    Jin, H., Li, Y., Li, J. and Gu, C. (2009). Field emission from ZnO nanostructures with different morphologies. Microelectronic Engineering, 86 (4): 1159 – 1161.

19.    Mamat, M. H., Khusaimi, Z., Zahidi, M. M., Suriani, A. B., Siran, Y. M., Rejab, S. A. M., Asis, A. J., Tahiruddin, S., Abdullah, S. and Rusop M. (2011). Controllable growth of vertically aligned aluminum-doped zinc oxide nanorod arrays by sonicated sol–gel immersion method depending on precursor solution.  Japanese Journal of Applied Physics, 50: 1 – 6.

20.    Banerjee, D., Sen, D. and Chattopadhyay, K. K. (2013). Simple chemical synthesis of porous carbon spheres and its improved field emission by water vapor adsorption. Microporous and Mesoporous Materials, 171: 201 – 207.

21.    Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari. A., Hashim, N., Mamat, M. H., Mohamed, A. R. and M. Rusop, M. (2015). Quasi-aligned carbon nanotubes synthesised from waste engine oil. Materials Letters, 139: 220 – 223.

22.    Suriani, A. B., Alfarisa, S., Mohamed, A., Kamari. A., Hashim, N., Isa, I. M., Mamat, M. H., Malek, M. F. and Ahmad, M. K. (2015). Amorphous Al–Cu alloy nanowires decorated with carbon spheres synthesised from waste engine oil. Journal of Alloys and Compounds, 642: 111 – 116.

23.    Suriani, A. B., Nor, R. M. and Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. Journal Ceramic Society Japan, 118: 963 – 968.

24.    Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Salina, M., Rosmi M. S., Rosly, J., Nor, R. M. and Rusop, M. (2013), Vertically aligned carbon nanotubes synthesized from waste chicken fat. Materials Letters, 101: 61 – 64.

25.    Suriani, A. B., Dalila, A. R., Mohamed, A., Isa, I. M., Kamari, A., Hashim, N., Soga, T. and Tanemura, M. (2015). Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications. Materials Research Bulletin, 70: 524 – 529.

26.    Suriani, A. B., Norhafizah, J., Mohammed, A., Mamat, M. H., Malek, M. F. and Ahmad, M. K. (2016). Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 27(11): 11599 – 11605.

27.    Suriani, A. B., Dalila, A. R., Mohamed, A., Soga, T. and Tanemura, M. (2015). Synthesis, structural, and field electron emission properties of quasi-aligned carbon nanotubes from gutter oil. Materials Chemistry and Physics, 165: 1 – 7.

28.    Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M. and Rusop, M. (2012). Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapor deposition method. Advanced Materials Research, 364: 359 – 362.

29.    Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., Rosly, J. and Rusop, M. (2012). Preparation of palm oil based carbon nanotubes at various ferrocene concentration. Advanced Materials Research, 364: 408 – 441.

30.    Shamsudin, M. S., Suriani, A. B., Abdullah, S., Yahya, S. Y. S. and Rusop, M. (2013). Impact of thermal annealing under nitrogen ambient on structural, micro-raman, and thermogravimetric analyses of camphoric-CNT. Journal of Spectroscopy, 2013: 1 – 7.

31.    Azmina, M. S., Suriani, A. B., Salina, M., Azira, A. A., Dalila, A. R., Asli, N. A., Rosly, J., Nor, R. M. and Rusop, M. (2012). Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. Nano Hybrids, 2: 43 – 63.

32.    Zobir, S. A. M., Bakar, S. A., Abdullah, S., Zainal, Z., Sarijo, S. H. and Rusop, M. (2012). Raman spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm olein-chemical vapour deposition. Journal of Nanomaterials, 2012: 1 – 6.

33.    Asli, N. A., Shamsudin, M. S., Suriani, A. B., Rusop, M. and Abdullah, S. (2013). Effect of the ratio of catalyst to carbon source on the growth of vertically aligned carbon nanotubes on nanostructured porous silicon templates. International Journal of Industrial Chemistry, 4(23): 1 – 7.

34.    Asli, N. A., Shamsudin, M. S., Falina, A. N., Azmina, M. S., Suriani, A. B., Rusop, M. and Abdullah, S. (2013). Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectronic Engineering, 108: 86 – 92.

35.    Suriani, A. B., Azira, A. A., Nik, S. F., Nor R. M. and Rusop, M. (2009). Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Materials Letters, 63(30): 2704 – 2706.

36.    Shamsudin, M. S., Achoi, M. F., Asiah, M. N., Ismail, L. N., Suriani, A. B., Abdullah, S., Yahya, S. Y. S. and Rusop, M. (2012). Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled sphere-like graphene-shell surface. Journal of Nanostructure in Chemistry, 3(13): 1 – 12.

37.    Salina, M., Ahmad, R., Suriani, A. B. and Rusop, M. (2012). Bandgap alteration of transparent zinc oxide thin film with Mg dopant. Transactions on Electrical and Electronic Materials, 13(2): 64 – 68.

38.    Wu, X., Wei, Z., Zhang, L., Wang, X., Yang, H. and Jiang, J. (2014). Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. Journal of Nanomaterials, 2014: 1 – 6.

 




Previous                    Content                    Next