Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 619 - 626
DOI:
https://doi.org/10.17576/mjas-2017-2103-11
REMOVAL
OF LEAD(II) FROM AQUEOUS SOLUTION USING POLYACRYLONITRILE/ZINC OXIDE ACTIVATED
CARBON NANOFIBERS
(Penyingkiran Plumbum(II) daripada Larutan Akues
Mengunakan Gentian Nano Karbon Teraktif Poliakrilonitril/Zink Oksida)
Norfadhilatuladha
Abdullah1,2, Muhamad Hanis Tajuddin1,2, Norhaniza Yusof1,2*,Juhana
Jaafar1,2,
Farhana Aziz1,2, Nurasyikin Misdan3
1Advanced Membrane Technology
Research Centre (AMTEC)
2Faculty of Chemical and Energy
Engineering (FCEE)
Universiti
Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
3Faculty of Engineering Technology,
Universiti Tun Hussein Onn
Malaysia, 86400 Parit Raja, Johor, Malaysia
*Corresponding author: norhaniza@petroleum.utm.my
Received:
26 August 2016; Accepted: 8 January 2017
Abstract
This study aimed to prepare activated
carbon nanofibers (ACNFs) from polyacrylonitrile (PAN) and zinc oxide (ZnO) via
electrospinning process for removal of lead from aqueous solution. The ACNFs/ZnO
were characterized in term of its morphological changes, specific surface area
and functional groups analysis using Field Emission Scanning Electron
Microscope (FESEM), Brunauer–Emmett–Teller (BET) and Fourier Transform Infrared
(FTIR) analysis, respectively. The results showed that the specific surface
area (SSA) of the ACNFs/ZnO were higher than the neat ACNFs which were 163.04 m2/g
as compared to 67.6 m2/g, accordingly. FESEM analysis illustrated
that composite ACNFs possessed more compact fibers with presence of ZnO beads
and smaller fiber diameter whereas neat ACNFs possessed more aligned nanofibers
with larger fiber diameter. Adsorption study showed that the composite ACNFs
possessed higher capacity which was 120.3 mg/g as compared to 77.6 mg/g of neat
ACNFs. This excellent adsorption performance of ACNFs PAN/ZnO exhibits the
potential of this composite adsorbent to solve the environmental issue of heavy
metal contamination.
Keywords: activated carbon, activated carbon nanofiber,
adsorption capacity, lead adsorption
Abstrak
Kajian ini bertujuan untuk menyediakan gentian-nano karbon teraktif
(ACNFs) daripada poliakrilonitril (PAN) and zink oksida melalui proses
putaran-elektro untuk menyingkirkan plumbum (II) daripada larutan akues. ACNFs/ZnO dicirikan berdasarkan perubahan
morfologi, luas permukaan spesifik, dan analisis kumpulan berfungsi mengunakan
Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), Brunauer–Emmett–Teller (BET) dan Inframerah
Transformasi Fourier (FTIR). Keputusan kajian menunjukkan luas permukaan
spesifik (SSA) komposit ACNFs adalah lebih tinggi berbanding ACNFs tanpa logam
oksida iaitu 163.04 m2/g berbanding 67.6 m2/g. Analisis
FESEM menunjukkan komposit ACNFs mempunyai gentian lebih padat dengan kehadiran
manik zink oksida and mempunyai diameter gentian lebih kecil manakala ACNFs
tanpa logam oksida mempunyai gentian lebih tersusun dengan diameter gentian
yang lebih besar. Ujian penjerapan menunjukkan bahawa penyingkiran Pb(II)
menunjukkan kapasiti penjerapan yang lebih tinggi, iaitu 120.0 mg/g berbanding
77.6 mg/g oleh ACNFs tanpa ZnO. Hasil kajian ini menunjukkan potensi PAN/ZnO
ACNFs sebagai penjerap untuk menyelesaikan isu pencemaran logam berat dalam
persekitaran.
Kata kunci: karbon teraktif; gentian nano karbon teraktif, kapasiti penjerapan,
penjerapan plumbum
References
1.
Sheet,
I., Kabbani, A. and Holail, H. (2014). Removal of heavy metals using
nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide
composite. Energy Procedia, 50: 130 –
138.
2.
Flora,
G., Gupta, D. and Tiwari, A. (2012). Toxicity of lead: A review with recent
updates. Interdisciplinary Toxicology,
5:47 – 58.
3.
Ghazy,
S. E. and Ragab, A. H. (2007). Removal of lead ions from aqueous solution by
sorptive-flotation using limestone and oleic acid. Iranian Journal of Chemistry and Chemical Engineering, 26: 83 – 92.
4.
Fu,
F. and Wang, Q. (2010). Removal of heavy metal ions from wastewaters: A review.
Journal of Environmental Management,
92: 407 – 418.
5.
Wang,
G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z. and Qiu, J. (2012). Activated
carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta, 69: 65 – 70.
6. Nataraj, S. K.,
Yang, K. S. and Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers –
A state-of-the-art review. Progress
Polymer Science, 37: 487 – 513.
7. Ramakrishna, S.,
Fujihara, K., Teo, W., Yong, T., Ma, Z. and Ramaseshan, R. (2013). Electrospun
nanofiber: Solving global issues. Materials
Today, 9(3): 40 – 50.
8.
Dadvar,
S., Tavanai, H. and Morshed, M. (2012).
Effect of embedding MgO and Al2O3 nanoparticles in the
precursor on the pore characteristics of PAN based activated carbon nanofibers.
Journal of Analytical and Applied
Pyrolysis, 98: 98 – 105.
9.
Faghihian,
H., Kooravand, M. and Atarodi, H. (2013). Synthesis of a novel carbon nanofiber
structure for removal of lead. Korean
Journal of Chemical Engineering, 30: 357 – 363.
10.
Norhaniza,
Y., Dipak, R., Ismail, A. F. and Takeshi, M. (2016). Microstructure of
polyacrylonitrile-based activated carbon fibers prepared from solvent-free
coagulation process. Journal of Applied
Research and Technology, 14: 54 – 61.
11.
Imtiaz,
A. and Rafique, U. (2011). Synthesis of metal oxides and its application as
adsorbent for the treatment of wastewater effluents. International Journal of Chemical and Environmental Engineering,
2(6): 400 – 405.