Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 619 - 626

DOI: https://doi.org/10.17576/mjas-2017-2103-11

 

 

 

REMOVAL OF LEAD(II) FROM AQUEOUS SOLUTION USING POLYACRYLONITRILE/ZINC OXIDE ACTIVATED CARBON NANOFIBERS

 

(Penyingkiran Plumbum(II) daripada Larutan Akues Mengunakan Gentian Nano Karbon Teraktif Poliakrilonitril/Zink Oksida)

 

Norfadhilatuladha Abdullah1,2, Muhamad Hanis Tajuddin1,2, Norhaniza Yusof1,2*,Juhana Jaafar1,2,

Farhana Aziz1,2, Nurasyikin Misdan3

 

1Advanced Membrane Technology Research Centre (AMTEC)

2Faculty of Chemical and Energy Engineering (FCEE)

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia

3Faculty of Engineering Technology,

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

*Corresponding author: norhaniza@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

This study aimed to prepare activated carbon nanofibers (ACNFs) from polyacrylonitrile (PAN) and zinc oxide (ZnO) via electrospinning process for removal of lead from aqueous solution. The ACNFs/ZnO were characterized in term of its morphological changes, specific surface area and functional groups analysis using Field Emission Scanning Electron Microscope (FESEM), Brunauer–Emmett–Teller (BET) and Fourier Transform Infrared (FTIR) analysis, respectively. The results showed that the specific surface area (SSA) of the ACNFs/ZnO were higher than the neat ACNFs which were 163.04 m2/g as compared to 67.6 m2/g, accordingly. FESEM analysis illustrated that composite ACNFs possessed more compact fibers with presence of ZnO beads and smaller fiber diameter whereas neat ACNFs possessed more aligned nanofibers with larger fiber diameter. Adsorption study showed that the composite ACNFs possessed higher capacity which was 120.3 mg/g as compared to 77.6 mg/g of neat ACNFs. This excellent adsorption performance of ACNFs PAN/ZnO exhibits the potential of this composite adsorbent to solve the environmental issue of heavy metal contamination.

 

Keywords:  activated carbon, activated carbon nanofiber, adsorption capacity, lead adsorption

 

Abstrak

Kajian ini bertujuan untuk menyediakan gentian-nano karbon teraktif (ACNFs) daripada poliakrilonitril (PAN) and zink oksida melalui proses putaran-elektro untuk menyingkirkan plumbum (II) daripada larutan akues.  ACNFs/ZnO dicirikan berdasarkan perubahan morfologi, luas permukaan spesifik, dan analisis kumpulan berfungsi mengunakan Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), Brunauer–Emmett–Teller (BET) dan Inframerah Transformasi Fourier (FTIR). Keputusan kajian menunjukkan luas permukaan spesifik (SSA) komposit ACNFs adalah lebih tinggi berbanding ACNFs tanpa logam oksida iaitu 163.04 m2/g berbanding 67.6 m2/g. Analisis FESEM menunjukkan komposit ACNFs mempunyai gentian lebih padat dengan kehadiran manik zink oksida and mempunyai diameter gentian lebih kecil manakala ACNFs tanpa logam oksida mempunyai gentian lebih tersusun dengan diameter gentian yang lebih besar. Ujian penjerapan menunjukkan bahawa penyingkiran Pb(II) menunjukkan kapasiti penjerapan yang lebih tinggi, iaitu 120.0 mg/g berbanding 77.6 mg/g oleh ACNFs tanpa ZnO. Hasil kajian ini menunjukkan potensi PAN/ZnO ACNFs sebagai penjerap untuk menyelesaikan isu pencemaran logam berat dalam persekitaran. 

 

Kata kunci:  karbon teraktif; gentian nano karbon teraktif, kapasiti penjerapan, penjerapan plumbum

 

References

1.       Sheet, I., Kabbani, A. and Holail, H. (2014). Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia, 50: 130 – 138.

2.       Flora, G., Gupta, D. and Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5:47 – 58.

3.       Ghazy, S. E. and Ragab, A. H. (2007). Removal of lead ions from aqueous solution by sorptive-flotation using limestone and oleic acid. Iranian Journal of Chemistry and Chemical Engineering, 26: 83 – 92.

4.       Fu, F. and Wang, Q. (2010). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92: 407 – 418.

5.       Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z. and Qiu, J. (2012). Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta, 69: 65 – 70.

6.       Nataraj, S. K., Yang, K. S. and Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers – A state-of-the-art review. Progress Polymer Science, 37: 487 – 513.

7.       Ramakrishna, S., Fujihara, K., Teo, W., Yong, T., Ma, Z. and Ramaseshan, R. (2013). Electrospun nanofiber: Solving global issues. Materials Today, 9(3): 40 – 50.

8.       Dadvar, S., Tavanai, H. and Morshed, M.  (2012). Effect of embedding MgO and Al2O3 nanoparticles in the precursor on the pore characteristics of PAN based activated carbon nanofibers. Journal of Analytical and Applied Pyrolysis, 98: 98 – 105.

9.       Faghihian, H., Kooravand, M. and Atarodi, H. (2013). Synthesis of a novel carbon nanofiber structure for removal of lead. Korean Journal of Chemical Engineering, 30: 357 – 363.

10.    Norhaniza, Y., Dipak, R., Ismail, A. F. and Takeshi, M. (2016). Microstructure of polyacrylonitrile-based activated carbon fibers prepared from solvent-free coagulation process. Journal of Applied Research and Technology, 14: 54 – 61.

11.    Imtiaz, A. and Rafique, U. (2011). Synthesis of metal oxides and its application as adsorbent for the treatment of wastewater effluents. International Journal of Chemical and Environmental Engineering, 2(6): 400 – 405.

 




Previous                    Content                    Next