Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 627 - 632

DOI: https://doi.org/10.17576/mjas-2017-2103-12

 

 

 

COMPARISON ON IN VITRO DEGRADATION OF POLYCAPROLACTONE AND POLYCAPROLACTONE/GELATIN NANOFIBROUS SCAFFOLD

 

(Perbandingan Degradasi In Vitro Bagi Perancah Gentian Nano Polikaprolakton dan Polikaprolakton/Gelatin)

 

Lim Mim Mim1 and Naznin Sultana1,2*

 

1Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering

2Advanced Membrane Technology Research Center

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author: naznin@biomedical.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Tissue engineering has emerged to provide a new medical therapy in helping tissue regrowth and regeneration by employing scaffold as an artificial supporting structure for cellular growth. Many polymers have been utilized in the fabrication of these artificial scaffolds, but there is still a need to fabricate hydrophilic nanofibrous scaffold with appropriate degradation rate. In this study, polycaprolactone (PCL) and polycaprolactone/gelatin (PCL/Ge) 70:30 nanofibrous scaffolds were fabricated using electrospinning technique and compared on in vitro degradation rate to determine a more suitable scaffold for skin tissue engineering application. In vitro degradation was evaluated by morphological changes, water uptake, and chemical bonding until 12 weeks. Result shows that both PCL and PCL/Ge (70:30) nanofibrous scaffolds were degraded after 8th week. However, the degradation rate of PCL nanofibrous scaffold is slower and does not has obvious morphological changes. PCL/Ge (70:30) nanofibrous scaffold with faster degradation rate have the potential for skin tissue engineering application.

 

Keywords:    tissue engineering, nanofibrous scaffold, in vitro degradation, polycaprolactone, polycaprolactone/ gelatin

 

Abstrak

Kejuruteraan tisu muncul untuk menyediakan terapi perubatan baru dalam membantu pertumbuhan semula tisu dengan menggunakan perancah sebagai struktur sokongan tiruan untuk pertumbuhan selular. Banyak polimer telah digunakan dalam penghasilan perancah ini, namun masih wujud permintaan terhadap penghasilan perancah gentian hidrofilik yang bersaiz nano dengan kadar degradasi yang sesuai. Dalam kajian ini, gentian perancah nano polikaprolakton (PCL) dan polikaprolakton/gelatin (PCL/Ge) 70:30 telah dihasilkan dengan teknik putaran elekron dan kadar degradasi in vitro dibandingkan untuk menentukan perancah yang lebih sesuai bagi aplikasi kejuruteraan tisu kulit. Degradasi in vitro telah dinilai melalui perubahan morfologi, penyerapan air, dan ikatan kimia kedua-dua gentian perancah nano sehingga 12 minggu. Keputusan menunjukkan kedua-dua PCL dan PCL/Ge (70:30) gentian perancah nano telah degradasi selepas minggu ke-8. Walau bagaimanapun, kadar degradasi gentian perancah nano PCL adalah lebih perlahan dan tiada perubahan morfologi yang jelas. Gentian perancah nano PCL/Ge (70:30) dengan kadar degradasi yang lebih cepat mempunyai potensi dalam bidang kejuruteraan tisu kulit.

 

Kata kunci:  kejuruteraan tisu, perancah gentian nano, degradasi in vitro, polikaprolakton, polikaprolakton/gelatin

 

References

1.       Priya, S. G., Jungvid, H. and  Kumar, A. (2008).  Skin tissue engineering  for  tissue  repair  and  regeneration. Tissue Engineering Part B: Reviews, 14(1): 105 – 118.

2.       Mansbridge, J.  (2008).  Skin  tissue  engineering.  Journal  of  Biomaterial  Science,  Polymer  Edition, 19(8): 955 – 968.

3.       Zhang, Y.,  Ouyang, H.,  Lim, C. T.,  Ramakrishna, S.  and  Huang,  Z. M. (2005).  Electrospinning  of  gelatin fibers  and  gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B, 72(1): 156 – 165.

4.       Sill, T. J. and von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989 – 2006.

5.       Goh, Y. F., Shakir, I. and Hussain, R. (2013). Electrospun  fibers  for  tissue  engineering,  drug  delivery, and wound dressing. Journal of Materials Science, 48(8): 3027 – 3054.

6.       Gelatin Manufacturers Institute of America (2012). Gelatin Handbook. Access from Dostupné z: www. gelatin-gmia.com/images/GMIA_Gelatin_Manual_2012.pdf.

7.       Woodruff, M. A. and  Hutmacher, D. W. (2010).  The  return of a forgotten polymer – polycaprolactone in the 21st century. Progress Polymer Science, 35(10), 1217 – 1256.

8.       Kim, C. H.,  Khil, M. S.,  Kim, H. Y.,  Lee, H. U. and  Jahng, K. Y. (2006).  An  improved  hydrophobicity via electrospinning for enhanced cell attachment and proliferation. Journal of Biomedical Materials Research Part B, 78(2): 283 – 290.

9.       Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H. and Ramakrishna, S. (2008). Electrospun  poly(ɛ-caprolactone)/gelatin  nanofibrous  scaffolds  for  nerve tissue  engineering.  Biomaterials, 29(34): 4532 – 4539.

10.    Powell, H. and Boyce, S. (2008).  Fiber  density of  electrospun  gelatin  scaffolds  regulates morphogenesis of dermal–epidermal skin substitutes. Journal of Biomedical Materials Research Part A, 84(4): 1078 – 1086.

11.    Chandrasekaran,  A. R.,  Venugopal, J.,  Sundarrajan, S.  and  Ramakrishna, S.  (2011).  Fabrication of  a nano-fibrous  scaffold  with  improved  bioactivity  for  culture of  human  dermal  fibroblasts for skin regeneration. Biomedical Materials, 6(1): 015001.

12.    Sultana,  N. and  Khan,  T. H. (2012).  In vitro degradation  of  PHBV  scaffolds  and  nHA/PHBV   composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. Journal of Nanomaterials, 2012: 1 – 12.

13.    Lim, M. M., Sun, T., and Sultana, N. (2015).  In vitro  biological  evaluation  of  electrospun polycaprolactone/gelatine nanofibrous scaffold for tissue engineering. Journal of Nanomaterials, 2015: 1 – 11.

14.    Chang, H.-I. and Wang, Y. (2011). Cell responses to surface and architecture of tissue engineering scaffolds: InTech Open Access Publisher: pp. 569 – 588.

15.    Cui, W.,  Li, X.,  Zhou, S. and  Weng, J. (2008).  Degradation  patterns  and  surface  wettability of electrospun fibrous mats. Polymer Degradation and Stability, 93(3): 731 – 738.

16.    Sultana, N. and  Kadir,  M. R. A.  (2011).  Study  of  in vitro degradation  of biodegradable polymer based thin films and tissue engineering scaffolds. African Journal of Biotechnology. 10(81): 18709 – 18715.

 




Previous                    Content                    Next