Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 527 - 534

DOI: https://doi.org/10.17576/mjas-2017-2103-02

 

 

 

GAMMA RADIATION-INDUCED GRAFTING OF ACETIC ACID ONTO EXPANDED POLY(TETRAFLUOROETHYLENE) MEMBRANES FOR BIOMATERIAL APPLICATIONS

 

(Sinaran Gama Mengaruh Pencantuman Asid Asetik Ke Atas Membran Poli(Tetrafluoroetilena) Regangan Bagi Aplikasi Biobahan)

 

Zaitizila Ismail, Norsyahidah Mohd Hidzir*, Nur Ain Mohd Radzali, Irman Abdul Rahman

 

School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: syahidah@ukm.edu.my

 

 

Received: 23 November 2016; Accepted: 10 April 2017

 

 

Abstract

Expanded poly(tetrafluoroethylene) (ePTFE) is used for many applications including in medical applications, such as for facial implants or as artificial vascular valves. However, due to its natural hydrophobic properties, it has limited efficacy in some applications. To be used as a facial implant, ePTFE must be biocompatible to the surrounding living tissues. Therefore, the modification of the ePTFE surface through a radiation-induced grafting technique was introduced in this study. Acetic acid (AA) was used as a monomer grafted onto ePTFE due to its hydrophilic properties. Monomer concentrations and radiation doses were observed to play an important role in the grafting outcomes. A dose of 15 kGy of γ-ray and 20% of AA concentration was observed to be an optimum grafting parameter in this study with the maximum grafting yield of 14 ± 4%. The result also showed a decrease of surface hydrophobicity for grafted ePTFE with the water contact angle decreased 18˚ (from 117˚ to 99˚). No extra band was observed in attenuated total reflectance infrared (ATR-FTIR) spectroscopy for grafted ePTFE, which indicated that grafting might occur only on the very top layer of ePTFE. Analysis from field emission scanning electron microscopy coupled with energy dispersive X-ray (FESEM/EDX) revealed a successful grafting as the oxygen peak can be seen on the treated sample.

 

Keywords:  radiation-induced grafting, grafting, expanded poly(tetrafluoroethylene), acetic acid

 

Abstrak

Poli(tetrafluoroetilena) regangan (ePTFE) digunakan dalam pelbagai aplikasi termasuklah dalam aplikasi perubatan, contohnya sebagai implan pada wajah atau sebagai vaskular injap tiruan. Walau bagaimanapun sifat semulajadi ePTFE yang hidrofobik menyebabkan keberkesanannya adalah terhad dalam beberapa aplikasi. ePTFE mestilah mempunyai tahap integrasi biologi yang optimum untuk digunakan sebagai implan wajah. Justeru, pengubahsuaian permukaan ePTFE meggunakan teknik pengkopolimeran menggunakan sinar gama diperkenalkan dalam kajian ini. Asetik asid digunakan sebagai monomer untuk tujuan percantuman dengan ePTFE disebabkan sifatnya yang hidrofilik. Dos sinaran dan kepekatan monomer yang digunakan menunjukkan peranan yang penting dalam peratusan hasil pencantuman. Parameter optimum telah dikenalpasti dalam kajian ini (iaitu dos sinaran 15 kGy dan kepekatan AA sebanyak 20%) dengan menghasilkan nilai cantuman tertinggi sebanyak 14±4%. Hasil juga menunjukkan sifat hidrofobik permukaan ePTFE berkurang sebanyak 18˚ dengan menganalisis sudut permukaan air (iaitu daripada 117˚ menjadi 99˚). Hasil keputusan analisis (ATR-FTIR) tidak menunjukkan sebarang perubahan spektrum berkemungkinan disebabkan pencantuman berlaku pada permukaan ePTFE sahaja. Manakala hasil keputusan daripada analisis (FESEM/EDX) menunjukkan ada pertambahan puncak oksigen di dalam analisis sampel yang telah disinar dan dicantum dengan AA, justeru menunjukkan percantuman berjaya berlaku.

 

Kata kunci :  sinaran mengaruh pencantuman, pencantuman, poli(tetrafluoroetilena) rengangan, asetik asid

 

References

1.       Cassady, A. I., Hidzir, N. M. and Grøndahl, L. (2014). Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. Journal of Applied Polymer Science, 131 (15): 40533 - 40547.

2.       Kannan, R. Y., Salacinski, H. J., Butler, P. E., Hamilton, G. and Seifalian, A. M. (2005). Current status of prosthetic bypass grafts: A review. Journal of Biomedical Materials Research Part B. Applied Biomaterials,74(1): 570 581.

3.       Wentrup-Byrne, E., Grøndahl, L. and Suzuki, S. (2005). Methacryloxyethyl phosphate-grafted expanded polytetrafluoroethylene membranes for biomedical applications. Polymer International, 54 (12): 1581 1588.

4.       Wu, T. H., Chen, K. S., Chen, S. C., Yeh, Y. C. and Shen, L. H. (2008). The Biomedical material of functional ePTFE hydrogels by the cold plasma method and radiation technique. Advanced Materials Research,  4750: 1427 1429.

5.       Rosli, N. A., Ahmad, I., Abdullah, I. and Anuar, F. H. (2014). Graft copolymerization of methyl methacrylate onto agave cellulose. Malaysian Journal of Analytical Science, 18(2): 398 404.

6.       Naemuddin, N. H., Suradi, S. S., Jamaluddin, J. and Adrus, N. (2015). Photografting of polyacrylamide hydrogel coating onto various polyethylene terephthalate textiles. Malaysian Journal of Analytical Sciences, 19(1): 163 172.

7.       Hidzir, N. M., Lee, Q., Hill, D. J. T., Rasoul, F. and Grondahl, L. (2014). Grafting of acrylic acid-co-itaconic acid onto ePTFE and characterization of water uptake by the graft copolymers. Journal of Applied Polymer Science, 132(7):41482 41494.

8.       Hidzir, N. M., Hill, D. J. T., Martin, D. and  Grøndahl, L. (2012). Radiation-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer, 53(26): 6063 6071.

9.       Hidzir, N. M., Hill, D. J. T., Taran, E., Martin, D. and Grøndahl, L. (2013). Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. Polymer, 54(24): 6536 6546.

10.    Dargaville, T. R., George, G. A., Hill, D. J. T. and Whittaker, A. K. (2003). High energy radiation grafting of fluoropolymers. Progress in Polymer Science, 28(9): 1355 1376.

11.    Chandler-Temple, A., Wentrup-Byrne, E., Whittaker, A. K. and Grøndahl, L. (2010). Graft copolymerization of methoxyacrylethyl phosphate onto expanded poly(tetrafluoroethylene) facial membranes. Journal of Applied Polymer Science, 117(6): 3331 3339.

12.    Yu, L., He, Y., Bin, L. and Yue’e, F. (2003). Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution. Journal of Applied Polymer Science, 90(10): 2855 2860.

13.    Nasef, M. M. (2001). Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films. Polymer International, 50 (3): 338 346.

14.    Chandler-Temple, A. F., Wentrup-Byrne, E., Griesser, H. J., Jasieniak, M., Whittaker, A. K. and Grøndahl, L. (2010). Comprehensive characterization of grafted expanded poly(tetrafluoroethylene) for medical applications. Langmuir,  26(19): 15409 15417.

15.    Xu, Z., Wan, L. and Huang, X. (2009). Surface engineering of polymer membranes. Zhejiang University Press, Hangzhou: pp. 82.

16.    Freger, V., Gilron, J. and Belfer, S. (2002). TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study. Journal of Membrane Science, 209(1): 283 292.

17.    Pelagade, S. M., Singh, N. L., Rane, R. S., Mukherjee, S., Deshpande, U. P., Ganesan, V. and Shripathi, T. (2012). Investigation of surface free energy for PTFE polymer by bipolar argon plasma treatment. Journal of Surface Engineered Materials and Advanced Technology, 2: 132 136.

 




Previous                    Content                    Next