Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 527 - 534
DOI:
https://doi.org/10.17576/mjas-2017-2103-02
GAMMA RADIATION-INDUCED GRAFTING OF ACETIC ACID ONTO
EXPANDED POLY(TETRAFLUOROETHYLENE) MEMBRANES FOR BIOMATERIAL APPLICATIONS
(Sinaran Gama Mengaruh Pencantuman Asid Asetik Ke Atas
Membran Poli(Tetrafluoroetilena) Regangan Bagi Aplikasi Biobahan)
Zaitizila Ismail, Norsyahidah Mohd Hidzir*, Nur Ain
Mohd Radzali, Irman Abdul Rahman
School of Applied
Physics, Faculty of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: syahidah@ukm.edu.my
Received: 23
November 2016; Accepted: 10 April 2017
Abstract
Expanded
poly(tetrafluoroethylene) (ePTFE) is used for many applications including in
medical applications, such as for facial implants or as artificial vascular
valves. However, due to its natural hydrophobic properties, it has limited
efficacy in some applications. To be used as a facial implant, ePTFE must be
biocompatible to the surrounding living tissues. Therefore, the modification of
the ePTFE surface through a radiation-induced grafting technique was introduced
in this study. Acetic acid (AA) was used as a monomer grafted onto ePTFE due to
its hydrophilic properties. Monomer concentrations and radiation doses were
observed to play an important role in the grafting outcomes. A dose of 15 kGy of
γ-ray and 20% of AA concentration was observed to be an optimum grafting
parameter in this study with the maximum grafting yield of 14 ± 4%.
The result also showed a decrease of surface hydrophobicity for grafted ePTFE
with the water contact angle decreased 18˚ (from 117˚ to 99˚). No extra band
was observed in attenuated total reflectance infrared (ATR-FTIR) spectroscopy
for grafted ePTFE, which indicated that grafting might occur only on the very
top layer of ePTFE. Analysis from field emission scanning electron microscopy
coupled with energy dispersive X-ray (FESEM/EDX) revealed a successful grafting
as the oxygen peak can be seen on the treated sample.
Keywords: radiation-induced grafting, grafting, expanded poly(tetrafluoroethylene),
acetic acid
Poli(tetrafluoroetilena) regangan (ePTFE) digunakan dalam pelbagai
aplikasi termasuklah dalam aplikasi perubatan, contohnya sebagai implan pada
wajah atau sebagai vaskular injap tiruan. Walau bagaimanapun sifat semulajadi
ePTFE yang hidrofobik menyebabkan keberkesanannya adalah terhad dalam beberapa
aplikasi. ePTFE mestilah mempunyai tahap integrasi biologi yang optimum untuk
digunakan sebagai implan wajah. Justeru, pengubahsuaian permukaan ePTFE
meggunakan teknik pengkopolimeran menggunakan sinar gama diperkenalkan dalam
kajian ini. Asetik asid digunakan sebagai monomer untuk tujuan percantuman
dengan ePTFE disebabkan sifatnya yang hidrofilik. Dos sinaran dan kepekatan
monomer yang digunakan menunjukkan peranan yang penting dalam peratusan hasil pencantuman.
Parameter optimum telah dikenalpasti dalam kajian ini (iaitu dos sinaran 15 kGy
dan kepekatan AA sebanyak 20%) dengan menghasilkan nilai cantuman tertinggi
sebanyak 14±4%. Hasil juga menunjukkan sifat hidrofobik permukaan ePTFE
berkurang sebanyak 18˚ dengan menganalisis sudut permukaan air (iaitu daripada
117˚ menjadi 99˚). Hasil keputusan analisis (ATR-FTIR) tidak menunjukkan
sebarang perubahan spektrum berkemungkinan disebabkan pencantuman berlaku pada
permukaan ePTFE sahaja. Manakala hasil keputusan daripada analisis (FESEM/EDX)
menunjukkan ada pertambahan puncak oksigen di dalam analisis sampel yang telah
disinar dan dicantum dengan AA, justeru menunjukkan percantuman berjaya
berlaku.
Kata kunci : sinaran mengaruh pencantuman, pencantuman, poli(tetrafluoroetilena)
rengangan, asetik asid
References
1. Cassady,
A. I., Hidzir, N. M. and Grøndahl, L. (2014). Enhancing expanded
poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. Journal of Applied Polymer Science, 131 (15):
40533 - 40547.
2. Kannan, R. Y., Salacinski, H. J., Butler, P. E.,
Hamilton, G. and Seifalian, A. M. (2005). Current status of prosthetic bypass
grafts: A review. Journal of Biomedical
Materials Research Part B. Applied Biomaterials,74(1): 570 – 581.
3. Wentrup-Byrne, E., Grøndahl, L. and Suzuki, S. (2005).
Methacryloxyethyl phosphate-grafted expanded polytetrafluoroethylene membranes
for biomedical applications. Polymer
International, 54 (12): 1581 –1588.
4. Wu, T. H., Chen, K. S., Chen, S. C., Yeh, Y. C. and
Shen, L. H. (2008). The Biomedical material of functional ePTFE hydrogels by
the cold plasma method and radiation technique. Advanced Materials Research, 47–50: 1427 – 1429.
5. Rosli, N. A., Ahmad, I., Abdullah, I. and Anuar, F. H.
(2014). Graft copolymerization of methyl methacrylate onto agave cellulose. Malaysian Journal of Analytical Science, 18(2):
398 – 404.
6. Naemuddin, N. H., Suradi, S. S., Jamaluddin, J. and
Adrus, N. (2015). Photografting of polyacrylamide hydrogel coating onto various
polyethylene terephthalate textiles. Malaysian
Journal of Analytical Sciences, 19(1): 163 – 172.
7. Hidzir, N. M., Lee, Q., Hill, D. J. T., Rasoul, F. and
Grondahl, L. (2014). Grafting of acrylic acid-co-itaconic acid onto ePTFE and
characterization of water uptake by the graft copolymers. Journal of Applied Polymer Science, 132(7):41482 – 41494.
8. Hidzir, N. M., Hill, D. J. T., Martin, D. and Grøndahl, L. (2012). Radiation-induced
grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes, Polymer, 53(26): 6063 – 6071.
9. Hidzir, N. M., Hill, D. J. T., Taran, E., Martin, D.
and Grøndahl, L. (2013). Argon plasma treatment-induced grafting of acrylic
acid onto expanded poly(tetrafluoroethylene) membranes. Polymer, 54(24): 6536 – 6546.
10. Dargaville, T. R., George, G. A., Hill, D. J. T. and
Whittaker, A. K. (2003). High energy radiation grafting of fluoropolymers. Progress in Polymer Science, 28(9): 1355
– 1376.
11. Chandler-Temple, A., Wentrup-Byrne, E., Whittaker, A.
K. and Grøndahl, L. (2010). Graft copolymerization of methoxyacrylethyl
phosphate onto expanded poly(tetrafluoroethylene) facial membranes. Journal of Applied Polymer Science, 117(6):
3331 – 3339.
12. Yu, L., He, Y., Bin, L. and Yue’e, F. (2003). Study of
radiation-induced graft copolymerization of butyl acrylate onto chitosan in
acetic acid aqueous solution. Journal of
Applied Polymer Science, 90(10): 2855 – 2860.
13. Nasef, M. M. (2001). Effect of solvents on
radiation-induced grafting of styrene onto fluorinated polymer films. Polymer International, 50 (3): 338 – 346.
14. Chandler-Temple, A. F., Wentrup-Byrne, E., Griesser,
H. J., Jasieniak, M., Whittaker, A. K. and Grøndahl, L. (2010). Comprehensive characterization
of grafted expanded poly(tetrafluoroethylene) for medical applications. Langmuir, 26(19): 15409 – 15417.
15. Xu, Z., Wan, L. and Huang, X. (2009). Surface engineering
of polymer membranes. Zhejiang University Press, Hangzhou: pp. 82.
16. Freger, V., Gilron, J. and Belfer, S. (2002). TFC polyamide
membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study.
Journal of Membrane Science, 209(1): 283
– 292.
17. Pelagade, S. M., Singh, N. L., Rane, R. S., Mukherjee,
S., Deshpande, U. P., Ganesan, V. and Shripathi, T. (2012). Investigation of
surface free energy for PTFE polymer by bipolar argon plasma treatment. Journal of Surface Engineered Materials and
Advanced Technology, 2: 132 – 136.