Malaysian Journal of
Analytical Sciences Vol 21 No 3 (2017): 535 - 543
DOI:
https://doi.org/10.17576/mjas-2017-2103-03
BIOACCUMULATION OF SEDIMENTARY ENDOCRINE DISRUPTING
CHEMICALS (EDCs) BY THE BENTHIC FISH, Pleuronectes yokohamae
(Biopenumpukan Bahan Kimia Pengganggu Endokrin
(EDCs) oleh Ikan Bentik, Pleuronectes
yokohamae)
Nurulnadia Mohd Yusoff1*,
Jiro Koyama2, Seiichi Uno2
1School of Marine and
Environmental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
2Faculty of Fisheries,
Kagoshima
University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan
*Corresponding author: nurulnadia@umt.edu.my
Received: 16 August 2016; Accepted: 20 April 2017
Abstract
In
this study, Pleuronectes
yokohamae (P. yokohamae) were exposed to the sediment mixed with
mixture of nonylphenol (NP), octylphenol (OP), estrone (E1) and 17β-estradiol
(E2) which makes up Endocrine Disrupting Chemicals (EDCs). The target compound
was detected in water sample, and NP and OP concentrations were found to be the
highest, 7.66 μg/L and 0.63 μg/L respectively (E1 and E2 concentrations were
below the limit of detection). In pore water on the other hand, NP
concentrations recorded the highest with 35.3 μg/L, while concentrations of OP,
E1 and E2 were 4.08 μg/L, 0.06 μg/L and 0.18 μg/L respectively. P. yokohamae shown
rapid and maximum accumulation of NP and OP on day 3, where NP recorded to be 2200
ng/g d.w. and OP 168 ng/g d.w. The recorded BAF values in low and high exposure
groups were 0.010 and 0.065 for NP, and 0.065 and 0.084 for OP. The BAF
findings recorded, being less than 1 indicated that there were no
bioaccumulations in the tested fish of both groups. However, due to their
nature of being more predisposed to accumulating EDCs than the water column,
the bioaccumulation of contaminant in benthic fish should be continually
monitored.
Keywords:
bioaccumulation, sediment, endocrine
disrupting chemical, Pleuronectes
yokohamae, marbled flounder
Abstrak
Dalam
kajian ini, campuran bahan kimia pengganggu endokrin (EDC) terdiri daripada
nonilfenol (NP), oktilfenol (OP), estron (E1) dan 17β-estradiol (E2) telah
dicampur ke dalam sedimen dan didedahkan kepada Pleuronectes yokohamae (P. yokohamae).
Sebatian sasaran telah dikesan dalam sampel air dengan kepekatan NP dan OP
tertinggi iaitu masing-masing 7.66 μg/L dan 0.63 μg/L (kepekatan E1 dan E2
adalah di bawah had pengesanan), manakala kepekatan tertinggi di dalam air
liang ialah 35.3 μg/L untuk NP, 4.08 μg/L untuk OP, 0.06 μg/L untuk E1 dan 0.18
μg/L untuk E2. Kepekatan NP dan OP di dalam P. yokohamae meningkat dengan mendadak pada hari 3
dan mencapai kepekatan maksimum 2200 ng/g d.w. dan 168 ng/g d.w. Nilai BAF
dalam kumpulan kepekatan rendah dan tinggi ialah 0.010 dan 0.065 untuk NP, dan
0.065 dan 0.084 untuk OP. BAF telah dikira kurang daripada 1 menunjukkan tiada
biopenumpukan EDC dalam ikan untuk kedua-dua kumpulan kepekatan. Walaupun
begitu, biopenumpukan bahan cemar kepada ikan bentik harus sentiasa dipantau
melalui sedimen berikutan kebolehannya menumpuk bahan EDC adalah lebih tinggi
berbanding kolum air.
Kata kunci: biopenumpukan, sedimen, bahan kimia pengganggu
endokrin, Pleuronectes yokohamae, marbled
flounder
References
1.
Folmar,
L. C., Denslow, N. D., Kroll, K., Orlando, E. F., Enblom, J., Marcino, J.,
Metcalfe, C. and Guillette Jr., L. J. (2001). Altered serum sex steroids and
vitellogenin induction in walleye (Stizostedion vitreum) collected near
a metropolitan sewage treatment plant. Archives of Environmental
Contamination & Toxicology, 40: 392 – 398.
2.
Tashiro,
Y., Takemura, A., Fujii, H., Takahira, K. and Nakanishi, Y. (2003). Livestock
wastes as a source of estrogens and their effects on wildlife of Manko tidal
flat, Okinawa. Marine Pollution Bulletin, 47: 143 – 147.
3.
Gray, M. A. and Metcalfe, C. D.
(1997). Induction of testis‐ova in Japanese medaka (Oryzias
latipes) exposed to p‐nonylphenol. Environmental Toxicology & Chemistry,
16(5): 1082 –
1086.
4.
Tapiero, H., Nguyen, Ba G. and Tew K. D. (2002). Estrogens and environmental estrogens. Biomedicine & Pharmacotherapy,
56: 36 – 44.
5.
Yu, Z. Q., Xiao, B. H., Huang,W. L. and Peng, P.
(2004). Sorption of steroid estrogens to soils and sediments. Environmental Toxicology and Chemistry, 23: 531 – 539.
6.
David, A., Fenet, H. and Gomez, E.
(2009). Alkylphenols in marine environments: distribution monitoring strategies
and detection considerations. Marine Pollution Bulletin, 58: 953 – 960.
7.
Sakamoto,
K. (1984). Pleuronectidae righteye flounders. In H. Masuda, K. Amaoka, T. Araga, T. Ueno, & T. Yoshino (Eds.). The Fishes of
the Japanese Archipelago Tokyo: Tokai University Press: pp. 336 –340.
8.
Park,
J. S. (1988). A study on the pleuronectid flounder Limanda yokohamae population
in Tokyo Bay. PhD Thesis, University of Tokyo, Tokyo (in Japanese).
9.
Park,
J. S. and Simizu, M. (1990). Maturity and spawning season of the Limanda
yokohamae (Günther) in Tokyo Bay, Japan. Bulletin of Fisheries Science
Institute, 6, 1 – 6.
10.
Takayama,
T., Hashimoto, S., Tokai, T. and Otsuki, A. (1995). Measurements of organic tin
compounds in fish and crustacean of Tokyo Bay. Environmental Science, 8:
1 – 9.
11.
Kammann,
U., Landgraff, O. and Steinhart, H. (1993). Distribution of aromatic
organochlorines in livers and reproductive organs of male and female dabs from
the German Bight. Marine Pollution Bulletin, 26: 629 – 635.
12.
Diehl, J., Johnson, S. E., Xia, K.,
West, A. and Tomanek, L. (2012). The distribution of 4 nonylphenol in marine
organisms of North American Pacific Coast estuaries. Chemosphere, 87(5): 490 –
497.
13.
Liber, K., Gangl, J. A., Corry, T. D.,
Heinis, L. J. and Stay, F. S. (1999). Lethality and bioaccumulation of
4-nonylphenol in bluegill sunfish in littoral enclosures. Environmental
Toxicology & Chemistry, 18: 394 –
400.
14.
Thorpe, K. L., Hutchinson, T. H.,
Hetheridge, M. J., Scholze, M., Sumpter, J. P. and Tyler, C. R. (2001).
Assessing the biological potency of binary mixtures of environmental estrogens
using vitellogenin induction in juvenile rainbow trout (Oncorhynchus
mykiss). Environmental Science &
Technology, 35(12):
2476 –
2481.
15.
Arukwe, A., Thibaut, R., Ingebrigsten,
K., Celius, T., Goksøyr, A. and Cravedi, J. P. (2000). In vivo and in vitro
metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic
Toxicology, 49(4): 289 –
304.
16.
Nurulnadia, M. Y., Koyama, J., Uno, S.,
Kito, A., Kokushi, E., Bacolod, E. T., Ito, K. and Chuman, Y. (2014).
Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo River mouth, Osaka Bay, Japan. Environmental
Monitoring & Assessment, 186(3): 1453 – 1463.
17.
Kwok, C. K., Liang, Y., Leung, S. Y., Wang,
H., Dong, Y. H., Young, L., Giesy, J. P. and Wong, M. H. (2013). Biota–sediment
accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant
levels in prey fish to indicate the extent of PAHs and OCPs contamination in
eggs of waterbirds. Environmental
Science & Pollution Research,
20(12): 8425 – 8434.
18.
Melwani, A. R., Greenfield, B. K. and
Byron, E. R. (2009). Empirical estimation of biota exposure range for
calculation of bioaccumulation parameters. Integrated Environmental
Assessment & Management, 5(1): 138 –
149.
19.
Servos, M. R. (1999). Review of the
aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and
alkylphenol polyethoxylates. Water Quality Research Journal of
Canada, 34: 123 –177.
20.
Staples, C., Mihaich, E., Carbone, J.,
Woodburn, K. and Klecka, G. (2004). A weight of evidence analysis of the
chronic ecotoxicity of nonylpenol ethoxylates, nonylphenol ether carboxylates,
and nonylphenol. Human
& Ecological Risk Assessment, 10:
999 – 1017.
21.
Ferreira-Leach, A. M. R. amd Hill, E. M.
(2000). Bioconcentration and metabolism of 4-tert octylphenol in roach (Rutilus rutilus) fry. Analysis, 28(9): 789 – 792.
22.
Tsuda, T., Takino, A., Muraki, K.,
Harada, H. and Kojima, M. (2001). Evaluation of 4 nonylphenols and
4-tert-octylphenol contamination of fish in rivers by laboratory accumulation
and excretion experiments. Water Research,
35(7): 1786 – 1792.
23.
Nurulnadia, M. Y., Koyama, J., Uno, S. and Amano, H.
(2016). Biomagnification of endocrine disrupting
chemicals (EDCs) by Pleuronectes yokohamae: Does P. yokohamae
accumulate dietary EDCs?. Chemosphere, 144: 185 –
192.
24.
Nurulnadia, M. Y., Koyama, J., Uno, S.,
Kokushi, E., Bacolod, E. T., Ito, K. and Chuman, Y. (2013). Bioaccumulation of
dietary Endocrine Disrupting Chemicals (EDCs) by the Polychaete, Perinereisnuntia. Bulletin
of Environmental Contamination & Toxicology, 91(4): 372 –
376.
25.
Mitchelmore, C. L. and Rice, C. P.
(2006). Correlations of nonylphenol-ethoxylates and nonylphenol with biomarkers
of reproductive function in carp (Cyprinus carpio) from the Cuyahoga River. Science of The Total Environment, 371(1): 391 –
401.
26.
Mäenpää, K. and Kukkonen, J. V. K.
(2006). Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and
4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquatic Toxicology,
77(3): 329 –
338.
27.
Pojana, G., Gomiero, A., Jonkers, N. and
Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds
(EDCs) in water, sediment and biota of a coastal lagoon. Environment
International, 33(7):
929 –
936.
28.
Kannan, K., Keith, T. L., Naylor, C. G.,
Staples, C. A., Snyder, S. A. and Giesy, J. P. (2003). Nonylphenol and
nonylphenol ethoxylates in fish, sediment, and water from the Kalamazoo River,
Michigan. Archives
of Environmental Contamination & Toxicology, 44(1): 77 –
82.
29.
Lye, C. M., Frid, C. L. J., Gill, M. E.,
Cooper, D. W. and Jones, D. M. (1999). Estrogenic alkylphenols in fish tissues,
sediments, and waters from the UK Tyne and Tees estuaries. Environmental
Science & Technology, 33(7): 1009 – 1014.
30.
Lacorte, S., Raldúa, D., Martínez, E., Navarro, A., Diez,
S., Bayona, J. M. and Barceló, D. (2006). Pilot
survey of a broad range of priority pollutants in sediment and fish from the
Ebro river basin (NE Spain). Environmental Pollution, 140(3): 471 –
482.
31.
Maruya, K. A., Vidal‐Dorsch, D. E., Bay, S. M., Kwon, J. W., Xia, K. and Armbrust, K.
L. (2012). Organic contaminants of emerging concern in sediments and flatfish
collected near outfalls discharging treated wastewater effluent to the Southern
California Bight. Environmental
Toxicology & Chemistry, 31(12): 2683 – 2688.
32.
Zhang, X., Gao, Y., Li, Q., Li, G., Guo,
Q. and Yan, C. (2011). Estrogenic compounds and estrogenicity in surface water,
sediments, and organisms from Yundang Lagoon in Xiamen, China. Archives of
Environmental Contamination & Toxicology,
61(1): 93 –
100.
33.
Verslycke, T. A., Vethaak, A. D., Arijs,
K. and Janssen, C. R. (2005). Flame retardants, surfactants and organotins in
sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environmental
Pollution, 136(1):
19 –
31.
34.
Wang, J., Shim, W. J., Yim, U. H.,
Kannan, N. and Li, D. (2010). Nonylphenol in bivalves and sediments in the
northeast coast of China. Journal of Environmental Sciences, 22(11): 1735 – 1740.