Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 560 - 570
DOI:
https://doi.org/10.17576/mjas-2017-2103-06
SYNTHESIS, STRUCTURAL, CHEMICAL PROPERTIES,
AND ANTI-BACTERIAL SCREENING OF Sm(III) THIOSEMICARBAZONE COMPLEXES
(Sintesis, Struktur, Sifat-Sifat Kimia, dan Penyaringan Antibakteria
bagi Kompleks Sm(III) Tiosemikarbazon)
Nur Nadia Dzulkifli1, 2*, Yang Farina1,
Bohari M.Yamin1, Nazlina Ibrahim3
1School of Chemical Science and Food Technology,
Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department
of Chemistry, Faculty of Applied Sciences,
Universiti
Teknologi MARA, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
3School of Biosciences and Biotechnology, Faculty of
Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: nurnadia@ns.uitm.edu.my
Received:
16 August 2016; Accepted: 12 March 2017
Abstract
Rare earth complexes can exhibit higher coordination numbers while rare
earth metals have the ability to form a multitude of geometries with organic
ligands. The ligands, [Sm(III) (4Acpy4MTSC)2(4H2O)Cl]Cl2
and [Sm(III) (4Acpy4ETSC)(5H2O)Cl2]Cl [4Acpy4MTSC =
4-acetylpyridine 4-methyl-3-thiosemicarbazone; 4Acpy4ETSC = 4-acetylpyridine
4-ethyl-3-thiosemicarbazone] have been synthesised by condensation method. The
compounds were structurally characterised by elemental analysis (CHNS), molar
conductivity, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance
(NMR), Ultraviolet-Visible (UV-Vis), and Thermo-Gravimetric Analysis (TGA). The
elemental analysis for the compounds were in a good agreement with the
theoretical values. The molar conductivity of the complexes showed electrolyte
behaviour and confirmed the presence of counter ions in the structures. The
proposed structures of the compounds have been confirmed by NMR, UV-Vis, and
TGA. Based on the analysis, the ligands were coordinated to the metal ions
through azomethine N and thione S thus, producing bidentate complexes. From the
TGA, it is confirmed that a few water molecules have coordinated with metal
ions. The X-ray crystallographic structures for the 4Acpy4ETSC, the C=S bond length
is shorter than the single bond C-S which is 1.82 Å. It shows that in the solid
state, the ligand exists in the thione form. The 4Acpy4ETSC adopted a
monoclinic system, a = 10.5922(7), b = 8.9597(6), c =
13.0407, Z = 4. In vitro antibacterial tests showed that the complexes
have an effective inhibitory effect compared to the ligands because the
presence of chloride ions, Cl- which caused the complexes to be more
acidic, can inhibit bacterial growth.
Keywords: thiosemicarbazone,
samarium(III), antibacterial screening
Abstrak
Sebatian
kompleks nadir bumi boleh wujud dengan nombor koordinatan yang lebih tinggi dan
logam nadir bumi berkeupayaan membentuk pelbagai geometri dengan ligan
organik. Sebatian ligan, [Sm(III)
(4Acpy4MTSC)2(4H2O)Cl]Cl2 dan [Sm(III)
(4Acpy4ETSC)(5H2O)Cl2]Cl [4Acpy4MTSC = 4-asetilpiridin
4-metil-3-tiosemikarbazon; 4Acpy4ETSC = 4-asetilpiridin
4-etil-3-tiosemikarbazon] telah disintesiskan melalui kaedah kondensasi.
Kesemua struktur sebatian telah dicirikan dengan analisis unsur (CHNS),
kekonduksian molar, spektoskopi Inframerah Transformasi Fourier (FTIR),
Resonans Magnet Nukleus (NMR), Ultralembayung-Sinar Nampak (UV-Vis), dan
analisis termogravimetrik (TGA). Data analisis unsur bagi semua sebatian adalah
hampir sama dengan nilai-nilai teori. Kekonduksian molar bagi sebatian kompleks
menunjukkan sifat elektrolit dan membuktikan kehadiran ion pembilang dalam
struktur sebatian. Struktur jangkaan bagi sebatian telah dibuktikan dengan NMR,
UV-Vis, dan TGA. Berdasarkan kepada analisis, ligan berkoordinat dengan ion
logam melalui N azometina dan S tion dengan menghasilkan sebatian kompleks
bersifat bidentat. Analisis TGA
membuktikan kehadiran beberapa molekul air yang berkoordinat dengan ion
logam. Struktur kristalografi sinar-X
bagi 4Acpy4ETSC, panjang ikatan C=S adalah lebih pendek daripada ikatan tunggal
C-S iaitu 1.82 Å. Ini menunjukkan bahawa
dalam keadaan pepejal, ligan wujud dalam bentuk tion. 4Acpy4ETSC menghablur
dalam sistem monoklinik, a = 10.5922(7), b = 8.9597(6), c =
13.0407, Z = 4. Ujian antibakteria in-vitro ke atas sebatian kompleks
mempamerkan kesan perencatan yang lebih tinggi berbanding dengan ligan kerana
kehadiran ion klorida, Cl- yang menyebabkan kompleks bersifat asid, boleh
menghalang pertumbuhan bakteria.
Kata kunci: tiosemikarbazon, samarium(III), penyaringan antibakteria
References
1. Demoro, B., De, A. R. F. M., Marques, F., Matos, C. P., Otero, L.,
Costa, Pes, J., Santos, I., Rodriguez, A., Moreno, V., Lorenzo, J., Gambino, D. and Tomaz, A. I. (2013). Screening
organometallic binuclear thiosemicarbazone ruthenium complexes as potential
anti-tumour agents: cytotoxic activity and human serum albumin binding
mechanism. Dalton Transactions, 42(19):
7131 – 7146.
2.
Atalay,
T. and Akgemci, E. G. (1998). Thermodynamic studies of some complexes of
2-benzoylpyridine 4-phenyl-3-thiosemicarbazone. Turkish Journal of Chemistry,
22: 123 – 128.
3.
Seda,
S., Baybars, K., Fatma, K. and Sevgi, H. B. (2009). Theoretical and
spectroscopic studies of 5-fluoro-isatin-3-(N-benzylthiosemicarbazone)
and its zinc(II) complex. Journal of Molecular Structure, 917: 63 – 70.
4. Bernhardt, P.
V., Sharpe, P. C.,
Islam, M., Lovejoy, D.
B., Kalinowski, D. S. and Richardson, D. R. (2008). Iron chelators of the dipyridylketone
thiosemicarbazone class: precomplexation and transmetalation effects on
anticancer activity. Journal of
Medicinal Chemistry, 52(2): 407 – 415.
5. Nguyen, T. B. Y., Pham, C. T., Trieu, T. N., Abram, U. and Nguyen,
H. H. (2015). Syntheses, structures and biological evaluation of some
transition metal complexes with a tetradentate benzamidine/thiosemicarbazone
ligand. Polyhedron, 96: 66 – 70.
6. Matesanz, A. I., Tapia, S. and Souza, P. (2016). First
3,5-diacetyl-1,2,4-triazol derived mono(thiosemicarbazone) and its palladium
and platinum complexes: Synthesis, structure and biological properties. Inorganica Chimica Acta, 445: 62 – 69.
7.
Rosu, T., Pahontu, E., Pasculescu, S., Georgescu,
R., Stanica, N., Curaj, A., Popescu, A. and Leabu, M. (2010). Synthesis,
characterization antibacterial and antiproliferative activity of novel Cu(II)
and Pd(II) complexes with 2-hydroxy-8-R-tricyclo[7.3.1.0.2,7]
tridecane-13-one thiosemicarbazone. European
Journal of Medicinal Chemistry, 45: 1627 – 1634.
8.
Feng, L., Shi, W.,
Ma, J., Chen, Y., Kui, F., Hui. Y. and Xie, Z. (2016). A novel thiosemicarbazone Schiff
base derivative with aggregation-induced emission enhancement characteristics
and its application in Hg2+ detection. Sensors and Actuators B: Chemical, 237: 563 – 569.
9. Hosseini-Yazdi, S. A., Hosseinpour, S., Khandar, A. A., Kassel, W.
S. and Piro, N. A. (2015). Copper(II) and nickel(II) complexes with two new
bis(thiosemicarbazone) ligands: Synthesis, characterization, X-ray crystal
structures and their electrochemistry behavior. Inorganica Chimica Acta, 427: 124 – 130.
10. Shahsavani, E., Khalaji, A. D., Feizi, N., Kucerakova, M. and
Dusek, M. (2015). Synthesis, characterization,
crystal structure and antibacterial activity of new sulfur-bridged dinuclear
silver(I) thiosemicarbazone complex [Ag2(PPh3)2(µ-S-Brcatsc)2(n1-S-Brcatsc)2](NO3)2.
Inorganica Chimica Acta, 429: 61 –
66.
11. Awang, N. W.,
Hasbullah, S. A., Yusoff, S. F. M. and Yamin, B. M. (2014). N-[Ethyl(2-hydroxyeth-yl)carbamothioyl]-3-fluorobenzamide.
Acta Crystallographica Section E:
Structure Reports Online, 70(5): 570.
12.
Bruker
(2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
13.
Bruker
(2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI.
14.
Sheldrick,
G. M. (2008). A short history of SHELX. Acta
Crystallographica Section A: Foundations of Crystallography, 64(1), 112 –
122.
15.
Spek,
A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological
Crystallography, 65(2): 148 – 155.
16. Seleem, H. S.,
Emara, A. A. and Shebl, M. (2005). The relationship between ligand structures
and their Co(II) and Ni(II) complexes: Synthesis and characterization of novel
dimeric Co(II)/Co(III) complexes of bis(thiosemicarbazone). Journal of Coordination Chemistry, 58(12):
1003 – 1019.
17. Rai, D. K. and
Singh, A. (2013). Synthesis, characterization and catalytic activity of
transition metal complexes with thiosemicarbazone core ligand. Indian Journal of Science Research,
4(2): 129 – 133.
18.
Liu,
Y. Y., Ma, J. F. and Yang, J. (2007). Syntheses and structures of Zn(II) and
Ni(II) complexes of 4-N-(acetylacetone amine)acetophenonehiosemicarbazone. Journal
Coordination of Chemistry, 60(14): 1579 – 1586.
19. Chatterjee, M.
and Ghosh, S. (1998). Vanadium(III) complexes of salicylaldehyde
thiosemicarbazones. Transition Metal
Chemistry, 23: 355 – 356.
20. Agata, T. K.
(2014). On the verification of binding modes of p-dimethylaminobenzaldehyde with mercury(II). The solid state
studies. Journal of Molecular Structure,
1072: 284 – 290.
21. Bisceglie, F.
Pinelli, S., Alinovi, R., Goldoni, M. and Mutti, A. (2014). Cinnamaldehyde and
cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes:
A study to understand their biological activity. Journal of Inorganic Biochemistry, 140: 111 – 125.
22. Brindha, G.
& Vijayanthimala, R. (2015).
Synthesis, characterization of novel Copper(II), nickel(II) complexes of
N-substituted thiosemicarbazides:
Evaluation of anti-bacterial, anti-fungal and anti-cancer activities. Journal
of Chemical and Pharmaceutical Research, 7(3): 225 – 231.
23. Silva, J. G. D.,
Wardell, S. M. S. V., Wardell, J. L. and Beraldo, H. (2009). Zinc(II) complexes
of 2-pyridine-derived N(4)-p-tolylthiosemicarbazones: Study of in
vitro antibacterial activity. Journal of Coordination Chemistry,
62(9): 1400 – 1406.
24.
Poyraz, M., Sari, M., Ney, A. G., Demirci, F.,
Demirayak, S. and Sahin, E. 2008. Synthesis, characterization and antimicrobial
activity of a Zn(II) complex with 1-(1H-benzoimidazol-2-yl)-ethanone
thiosemicarbazone. Journal of
Coordination Chemistry, 61(20): 3276 – 3283.
25. El-Asmy, A. A.,
El-Gammal, O. A. and Saleh, H. S. (2008). Spectral, thermal, electrochemical
and analytical studies on Cd(II) and Hg(II) thiosemicarbazone complexes. Spectrochimica Acta Part A, 71: 39 – 44.
26. Tulay, B-D.,
Musa, S., Esin, K., Mustafa, O., Bahri, U. and Resat, A. (2015). Synthesis and
antioxidant activities of transition metal complexes based
3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138:
866 – 872.
27. Kenawy, I. M.,
Hassanien, M. M., Abdel-Rhman, M. H., Zaki, R. R. and Rashed, H. S. (2016).
Synthesis and characterization of Hg(II) and Cd(II) complexes derived from the
novel acenaphthaquinone-4-phenyl thiosemicarbazone and its CPE application. Egyptian Journal of Basic and Applied Sciences, 3(1): 106 – 117.
28. Taha, Z. A.,
Ajlouni, A. A. M. and Momani, W. A. (2012).
Structural, luminescence and biological studies of trivalent lanthanide
complexes with N,N’-Bis(2-Hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base
ligand. Journal of Luminescence, 132:
2832 – 2841.
29.
Stanojkovic, T. P., Kovala-Demertzi, D., Primikyri, A., Garcia-Santos, I., Castineiras, A., Juranic, Z. and Demertzis,
M. A. (2010). Zinc(II)
complexes of 2-acetyl pyridine 1-(4-fluorophenyl)-piperazinylthiosemicarbazone:
Synthesis, spectroscopic study and crystal structures – Potential anticancer
drugs. Journal of Inorganic Biochemistry,
104: 467 – 476.
30.
Waleed,
M. A. M. (2013). A study of in vitro
antibacterial activity of lanthanides complexes with a tetradentate Schiff base
ligand. Asian Pacific Journal of Tropical Biomedicine, 3(5): 367 – 370.
31.
Obaleye,
J. A., Adediji, J. F. and Adebayo, M. A. (2011). Synthesis and biological
activities on metal complexes of 2,5-diamino-1,3,4-thiadiazolederivedfrom
semicarbazide hydrochloride. Molecules,
16(7): 5861 – 5874.
32.
Sankaraperumal,
A., Karthikeyan, J., Shetty, A. N. and Lakshmisundaram, R. (2013). Nickel(II)
complex of p-[N.N-bis(2-chloroethyl)amino]benzaldehyde-4-methylthiosemicarbazone:
Synthesis, structural characterization and biological application. Polyhedron, 50: 264 – 269.