malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 571 - 584

DOI: https://doi.org/10.17576/mjas-2017-2103-07

 

 

 

SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE FROM BULK SEASHELLS AND ITS POTENTIAL USAGE AS LEAD IONS ADSORBENT

 

(Sintesis dan Pencirian Hidroksiapatit dari Kulit Kerang dan Potensi Sebagai Penjerap Ion Plumbum)

 

Marinah Mohd Ariffin1*, Norhafiza Ilyana Yatim1, Sofiah Hamzah2

 

1School of Marine and Environmental Sciences

2School of Ocean Engineering

Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Malaysia

 

*Corresponding author: erin@umt.edu.my

 

 

Received: 16 August 2016; Accepted: 27 March 2017

 

 

Abstract

In the present work, hydroxyapatite (HAP) powder was successfully synthesized via the thermal decomposition and subsequent wet precipitation (with different experimental reaction times of 3, 5, 24, 48, and 72 hours of bulk seashells. We found that the reaction time during wet precipitation stage affected the physical and chemical properties of HAPs adsorbents. HAP synthesized with a reaction time of 48 hours showed the highest removal of Pb2+ ions (99.1%) and is highly potential to be used as bio adsorbent material in heavy metal wastewater treatment.

 

Keywords:  hydroxyapatite, seashell, wet precipitation, lead

 

Abstrak

Di dalam kajian ini, serbuk hidroksiapatit (HAP) telah berjaya disintesis dari kulit kerang melalui proses penguraian termal dan diikuti oleh teknik pemendakan basah (dengan masa tindakbalas kajian 3, 5, 24 dan 72 jam). Kajian mendapati masa tindakbalas mempengaruhi ciri-ciri fizikal dan kimia penjerap HAP. HAP yang disintesis dengan masa tindakbalas selama 48 jam menunjukkan peratusan penyingkiran ion Pb2+ tertinggi (99.1%) dan berpotensi untuk digunakan sebagai bahan penjerap-bio bagi pemulihan logam berat di dalam air sisa.

 

Kata kunci:  hidroksiapatit, kulit kerang, pemendakan basah, plumbum

 

References

1.       Sutherland, A. M. C. A., Milner, E. F., Kerby, R. C. and Teindl, H. (1990). Lead. Ullmann’s Encyclopedia of Industrial Chemistry. VCH Verlagsgesellschaft: pp. 193 – 257.

2.       Das, S., Raj, R., Mangwani, N., Dash, H. R. and Chakraborty, J. (2014). Heavy metals and hydrocarbons: Adverse effects and mechanism of toxicity. Microbial Biodegradation and Bioremediation. Elsevier Inc: pp 24 – 54. 

3.       Engineering Services Division (2017). Drinking water quality standard. Acess online http://kmam.moh.gov.my/ public-user/drinking-water-quality-standard.html. Accessed on 12 January 2017.

4.       Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11): 2469 – 2479.

5.       Mudhoo, A., Garg, V. K. and Wang, S. (2011). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2): 109 – 117.

6.       Shepherd, J. H., Friederichs, R. J. and Best, S. M. (2015). Synthetic hydroxyapatite for tissue engineering applications. Hydroxyapatite (HAP) for biomedical applications. Elsevier Ltd: pp. 235 – 267.

7.       Camaioni, A., Cacciotti, I., Campagnolo, L. and Bianco, A. (2015). Silicon-substituted hydroxyapatite for biomedical applications. Hydroxyapatite (HAP) for biomedical applications. Elsevier Ltd: pp. 343 – 373.

8.       Milovac, D., Gallego, G., Ivankovic, M. and Ivankovic, H. (2014). PCL-coated hydroxyapatite scaffold derived from cuttle fish bone: Morphology, mechanical properties and bioactivity. Materials Science & Engineering C, 34: 437 – 445.

9.       Zhang, X. and Vecchio, K. S. (2006). Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Materials Science & Engineering C, 26(8): 1445 – 1450.

10.    Corami, A., Mignardi, S. and Ferrini, V. (2007). Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazourdous Materials, 146(1–2): 164 – 170.

11.    Minh, D. P., Tran, N. D., Nzihou, A. and Sharrock, P. (2013). Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chemical Engineering Journal, 232: 128 – 138.

12.    Prabhu, S. M., and Meenakshi, S. (2014). Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution. Powder Technology, 268: 306 – 315.

13.    Mobasherpour, I., Salahi, E. and Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal Chemistry, 5(4): 439 – 446.

14.    Bramhe, S., Kim, T. N., Balakrishnan, A. and Chu, M. C. (2014). Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowires. Materials Letters, 135: 195 – 198.

15.    Wu, S.-C., Tsou, H.-K., Hsu, H.-C., Hsu, S.-K., Liou, S.-P. and Ho, W.-F. (2013). A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceramics International, 39(7): 8183 – 8188.

16.    Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N. and Cho, S.-J. (2009). Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Materials Letters, 63(24–25): 2100 –2102.

17.    Aminian, A., Solati-Hashjin, M., Samadikuchaksaraei, A., Bakhshi, F., Gorjipour, F., Farzadi, A., Moztarzadeh, F. and Schmücker, M. (2011). Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceramics International, 37(4): 1219 –1229.

18.    Zhao, J., Zhu, Y., Cheng, G., Ruan, Y., Sun, T., Chen, F., Wu, J., Zhao, X. –Y., and Ding, G. (2014). Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5’-triphosphate disodium salt as a phosphate source. Materials Letters, 124: 208 – 211.

19.    Zhao, J., Dong, X., Bian, M., Zhao, J., Zhang, Y., Sun, Y., Chen, J. and Wang, X. (2014). Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Applied Surface Science, 314: 1026 – 1033.

20.    Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2(2): 903 – 907.

21.    Ofomaja, A. E. (2011). Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust. Industrial Crops and Products, 33(2): 418 – 428.

22.    Mahamad, M. N., Zaini, M. A. A. and Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102: 274 – 280.

23.    Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. (2014). synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112 – 117.

24.    Wu, S.-C., Hsu, H.-C., Wu, Y.-N. and Ho, W.-F. (2011). Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Materials Characterization, 62(12): 1180 – 1187.

25.    Singh, A. (2012). Hydroxyapatite, a biomaterial: Its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail, Helix aspersa. Bulletin of Materials Science, 35(6): 1031 – 1038.

26.    Ge, H., Zhao, B., Lai, Y., Hu, X., Zhang, D., and Hu, K. (2010). From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method. Journal of Materials Science: Materials in Medicine. 21(6): 1781 – 1787.

27.    Putro, J. N., Handoyo, N., Kristiani, V., Soenjaya, S. A., Ki, O. L., Soetaredjo, F. E., Ju, Y. –H. and Ismadji, S. (2014). Pomacea sp shell to hydroxyapatite using the ultrasound–microwave method (U–M). Ceramics International, 40(7): 11453 – 11456.

28.    Spivak, D. A. (2005). Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews, 57(12): 1779 – 1794.

29.    Ariffin, M. M., Yatim, N. I. and Tahir, N. M. (2015). Selective surface characteristics and extraction performance of a nitro-group explosive molecularly imprinted polymer. Malaysian Journal of Analytical Sciences, 19(3): 574 – 585.

30.    Zhang, X. and Vecchio, K. S. (2007). Hydrothermal synthesis of hydroxyapatite rods. Journal of Crystal Growth, 308(1): 133 – 140.

31.    Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A. and Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering C, 43: 153 – 163.

32.    Terasaka, S., Kamitakahara, M., Yokoi, T. and Matsubara, H. (2015). Ability of hydroxyapatite synthesized from waste oyster shells to remove fluoride ions. Materials Transactions, 56(9): 1509 – 1512.

33.    Mahidin, M., Gani, A., Muslim, A., Husin, H., Hani, M. R., Syukur, M., Hamdan, Khairil, K. and Rizal, S. (2016). Sulfur removal in bio-briquette combustion using seashell waste adsorbent at low temperature. Journal of Engineering and Technological Sciences, 48(4): 465 – 481.

34.    Suteu, D. and Rusu, L. (2012). Removal of methylene blue dye from aqueous solution using seashell wastes as biosorbent. Environmental Engineering and Management Journal, 11(11): 1977 – 1985.

35.    Zhang, Y., Liu, W., Banks, C. E., Liu, F., Li, M., Xia, F. and Yang, X. (2014). A fluorescence-quenching platform based on biomineralized hydroxyapatite from natural seashell and applied to cancer cell detection. Scientific Reports, 4: 7556.

36.    Zhang, X. and Vecchio, K. S. (2013). Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Frontiers of Materials Science, 7(2): 103 – 117.

37.    Narayanan, R., Dutta, S. and Seshadri, S. K. (2006). Hydroxy apatite coatings on Ti-6Al-4V from seashell. Surface and Coatings Technology, 200(16–17): 4720 – 4730.

38.    Bozbaş, S. K., and Boz, Y. (2016). Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution. Process Safety and Environmental Protection, 103: 144 – 152.

39.    El-Sayed, G. O., Dessouki, H. A. and Ibrahiem, S. S. (2011). Removal of Zn (II), Cd (II) and Mn (II) from aqueous solutions by adsorption on maize stalks. Malaysian Journal of Analytical Sciences, 15(1): 8 – 21.

40.    Lee, S. H., and Shrestha, S. (2014). Application of micellar enhanced ultrafiltration (MEUF) process for zinc (II) removal in synthetic wastewater: Kinetics and two-parameter isotherm models. International Biodeterioration and Biodegradation, 95: 241 – 250.

41.    Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of Nanostructure in Chemistry, 3(1): 55 – 61.

42.    Largitte, L. and Lodewyckx, P. (2015). Modeling the influence of the operating conditions upon the sorption rate and the yield in the adsorption of lead (II). Microporous and Mesoporous Materials. 202: 147 – 154.

43.    Igberase, E., Osifo, P. and Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1): 362 – 369.

44.    Lim, A. P., and Aris, A. Z. (2014). Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochemical Engineering Journal, 87: 50 – 61 .

45.    Mousa, S. M., Ammar, N. S. and Ibrahim, H. A. (2016). Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. Journal of Saudi Chemical Society, 20(3): 357 –365.

 




Previous                    Content                    Next