DOI:
https://doi.org/10.17576/mjas-2017-2103-07
(Sintesis dan Pencirian
Hidroksiapatit dari Kulit Kerang dan Potensi Sebagai Penjerap Ion Plumbum)
Marinah Mohd Ariffin1*, Norhafiza Ilyana
Yatim1, Sofiah Hamzah2
1School of Marine and Environmental Sciences
2School of Ocean Engineering
Universiti
Malaysia Terengganu, 21300 Kuala Terengganu, Malaysia
*Corresponding author: erin@umt.edu.my
Received:
16 August 2016; Accepted: 27 March 2017
Abstract
In
the present work, hydroxyapatite (HAP) powder was successfully synthesized via the thermal decomposition and
subsequent wet precipitation (with different experimental reaction times of 3,
5, 24, 48, and 72 hours of bulk seashells. We found that the reaction time
during wet precipitation stage affected the physical and chemical properties of
HAPs adsorbents. HAP synthesized with a reaction time of 48 hours showed the
highest removal of Pb2+ ions (99.1%) and is highly potential to be
used as bio adsorbent material in heavy metal wastewater treatment.
Keywords: hydroxyapatite, seashell, wet precipitation,
lead
Abstrak
Di dalam kajian ini, serbuk hidroksiapatit (HAP) telah berjaya disintesis
dari kulit kerang melalui proses penguraian termal dan diikuti oleh teknik
pemendakan basah (dengan masa tindakbalas kajian 3, 5, 24 dan 72 jam). Kajian
mendapati masa tindakbalas mempengaruhi ciri-ciri fizikal dan kimia penjerap
HAP. HAP yang disintesis dengan masa tindakbalas selama 48 jam menunjukkan
peratusan penyingkiran ion Pb2+ tertinggi (99.1%) dan berpotensi
untuk digunakan sebagai bahan penjerap-bio bagi pemulihan logam berat di dalam
air sisa.
Kata kunci: hidroksiapatit, kulit kerang, pemendakan
basah, plumbum
References
1.
Sutherland, A. M. C. A., Milner, E. F., Kerby, R. C. and
Teindl, H. (1990). Lead. Ullmann’s
Encyclopedia of Industrial Chemistry. VCH Verlagsgesellschaft: pp. 193 –
257.
2.
Das, S., Raj, R., Mangwani, N., Dash, H. R. and Chakraborty,
J. (2014). Heavy metals and
hydrocarbons: Adverse effects and mechanism of toxicity. Microbial
Biodegradation and Bioremediation. Elsevier Inc:
pp 24 – 54.
3.
Engineering Services Division (2017). Drinking water quality
standard. Acess online http://kmam.moh.gov.my/ public-user/drinking-water-quality-standard.html.
Accessed on 12 January 2017.
4.
Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D.
(1999). A review of potentially low-cost sorbents for heavy metals. Water
Research, 33(11): 2469 –
2479.
5.
Mudhoo, A., Garg, V. K. and Wang, S. (2011). Removal of heavy
metals by biosorption. Environmental Chemistry Letters, 10(2): 109 – 117.
6.
Shepherd, J. H., Friederichs, R. J. and Best, S. M. (2015). Synthetic hydroxyapatite for tissue
engineering applications. Hydroxyapatite (HAP) for biomedical
applications. Elsevier Ltd: pp. 235 –
267.
7.
Camaioni, A., Cacciotti, I., Campagnolo, L. and Bianco, A. (2015). Silicon-substituted hydroxyapatite for biomedical
applications. Hydroxyapatite
(HAP) for biomedical applications. Elsevier Ltd:
pp. 343 – 373.
8.
Milovac, D., Gallego, G., Ivankovic, M. and Ivankovic, H.
(2014). PCL-coated hydroxyapatite scaffold derived from cuttle fish bone:
Morphology, mechanical properties and bioactivity. Materials
Science & Engineering C, 34: 437 – 445.
9.
Zhang, X. and Vecchio, K. S. (2006). Creation of dense hydroxyapatite
(synthetic bone) by hydrothermal conversion of seashells. Materials Science & Engineering C, 26(8): 1445 – 1450.
10.
Corami, A., Mignardi, S. and Ferrini, V. (2007). Copper and
zinc decontamination from single- and binary-metal solutions using hydroxyapatite.
Journal of Hazourdous Materials, 146(1–2):
164 – 170.
11.
Minh, D. P., Tran, N. D., Nzihou, A. and Sharrock, P. (2013).
Hydroxyapatite gel for the improved removal of Pb2+ ions from
aqueous solution. Chemical
Engineering Journal,
232: 128 – 138.
12.
Prabhu, S. M., and Meenakshi, S. (2014). Synthesis of surface coated hydroxyapatite
powders for fluoride removal from aqueous solution. Powder Technology, 268:
306 – 315.
13.
Mobasherpour, I., Salahi, E. and Pazouki, M. (2012).
Comparative of the removal of Pb2+, Cd2+ and Ni2+
by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm
study. Arabian Journal Chemistry,
5(4): 439 – 446.
14.
Bramhe, S., Kim, T. N., Balakrishnan, A. and Chu, M. C.
(2014). Conversion from biowaste Venerupis
clam shells to hydroxyapatite nanowires. Materials Letters, 135: 195 – 198.
15.
Wu, S.-C., Tsou, H.-K., Hsu, H.-C., Hsu, S.-K., Liou, S.-P.
and Ho, W.-F. (2013). A hydrothermal synthesis of eggshell and fruit waste
extract to produce nanosized hydroxyapatite. Ceramics International, 39(7): 8183 – 8188.
16.
Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N. and
Cho, S.-J. (2009). Utilization of biowaste eggshells to synthesize
nanocrystalline hydroxyapatite powders. Materials
Letters, 63(24–25): 2100 –2102.
17.
Aminian, A., Solati-Hashjin, M., Samadikuchaksaraei, A.,
Bakhshi, F., Gorjipour, F., Farzadi, A., Moztarzadeh, F. and Schmücker, M.
(2011). Synthesis of silicon-substituted hydroxyapatite by a hydrothermal
method with two different phosphorous sources. Ceramics International, 37(4): 1219 –1229.
18.
Zhao, J., Zhu, Y., Cheng, G., Ruan, Y., Sun, T., Chen, F.,
Wu, J., Zhao, X. –Y., and Ding, G. (2014). Microwave-assisted hydrothermal
rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite
microspheres using cytidine 5’-triphosphate disodium salt as a phosphate
source. Materials Letters, 124: 208 –
211.
19.
Zhao, J., Dong, X., Bian, M., Zhao, J., Zhang, Y., Sun, Y.,
Chen, J. and Wang, X. (2014). Solution combustion method for synthesis of
nanostructured hydroxyapatite, fluorapatite and chlorapatite. Applied Surface Science, 314: 1026 –
1033.
20.
Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies:
An overview. International Journal of
ChemTech Research, 2(2): 903 – 907.
21.
Ofomaja, A. E. (2011). Kinetics and pseudo-isotherm studies
of 4-nitrophenol adsorption onto mansonia wood sawdust. Industrial Crops and Products, 33(2): 418 – 428.
22.
Mahamad, M. N., Zaini, M. A. A. and Zakaria, Z. A. (2015).
Preparation and characterization of activated carbon from pineapple waste
biomass for dye removal. International
Biodeterioration & Biodegradation, 102: 274 – 280.
23.
Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. (2014).
synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112 – 117.
24.
Wu, S.-C., Hsu, H.-C., Wu, Y.-N. and Ho, W.-F. (2011).
Hydroxyapatite synthesized from oyster shell powders by ball milling and heat
treatment. Materials Characterization,
62(12): 1180 – 1187.
25.
Singh, A. (2012). Hydroxyapatite, a biomaterial: Its chemical
synthesis, characterization and study of biocompatibility prepared from shell
of garden snail, Helix aspersa. Bulletin of Materials Science, 35(6):
1031 – 1038.
26.
Ge, H., Zhao, B., Lai, Y., Hu, X., Zhang, D., and Hu, K.
(2010). From crabshell to chitosan-hydroxyapatite composite material via a
biomorphic mineralization synthesis method. Journal
of Materials Science: Materials in Medicine. 21(6): 1781 – 1787.
27.
Putro, J. N., Handoyo, N., Kristiani, V., Soenjaya, S. A.,
Ki, O. L., Soetaredjo, F. E., Ju, Y. –H. and Ismadji,
S. (2014). Pomacea sp shell to
hydroxyapatite using the ultrasound–microwave method (U–M). Ceramics International, 40(7): 11453 –
11456.
28.
Spivak, D. A. (2005). Optimization, evaluation, and
characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews, 57(12): 1779 – 1794.
29.
Ariffin, M. M., Yatim, N. I. and Tahir, N. M. (2015).
Selective surface characteristics and extraction performance of a nitro-group
explosive molecularly imprinted polymer. Malaysian
Journal of Analytical Sciences, 19(3): 574 –
585.
30.
Zhang, X. and Vecchio, K. S. (2007). Hydrothermal synthesis
of hydroxyapatite rods. Journal of
Crystal Growth, 308(1): 133 – 140.
31.
Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A.
and Tanasescu, S. (2014). Thermal and structural characterization of synthetic
and natural nanocrystalline hydroxyapatite. Materials
Science and Engineering C, 43: 153 – 163.
32.
Terasaka, S., Kamitakahara, M., Yokoi, T. and Matsubara, H.
(2015). Ability of hydroxyapatite synthesized from waste oyster shells to
remove fluoride ions. Materials
Transactions, 56(9): 1509 – 1512.
33.
Mahidin, M., Gani, A., Muslim, A., Husin, H., Hani, M. R.,
Syukur, M., Hamdan, Khairil, K. and Rizal, S. (2016). Sulfur removal in
bio-briquette combustion using seashell waste adsorbent at low temperature. Journal of Engineering and Technological
Sciences, 48(4): 465 – 481.
34.
Suteu, D. and Rusu, L. (2012). Removal of methylene blue dye
from aqueous solution using seashell wastes as biosorbent. Environmental Engineering and Management Journal, 11(11): 1977 –
1985.
35.
Zhang, Y., Liu, W., Banks, C. E., Liu, F., Li, M., Xia, F.
and Yang, X. (2014). A fluorescence-quenching platform based on biomineralized
hydroxyapatite from natural seashell and applied to cancer cell detection. Scientific Reports, 4: 7556.
36.
Zhang, X. and Vecchio, K. S. (2013). Conversion of natural
marine skeletons as scaffolds for bone tissue engineering. Frontiers of Materials Science, 7(2): 103 – 117.
37.
Narayanan, R., Dutta, S. and Seshadri, S. K. (2006). Hydroxy
apatite coatings on Ti-6Al-4V from seashell. Surface and Coatings Technology, 200(16–17): 4720 – 4730.
38.
Bozbaş, S. K., and Boz, Y. (2016). Low-cost biosorbent: Anadara inaequivalvis shells for removal
of Pb(II) and Cu(II) from aqueous solution. Process
Safety and Environmental Protection, 103: 144 – 152.
39.
El-Sayed, G. O., Dessouki, H. A. and Ibrahiem, S. S. (2011).
Removal of Zn (II), Cd (II) and Mn (II) from aqueous solutions by adsorption on
maize stalks. Malaysian Journal of
Analytical Sciences, 15(1): 8 – 21.
40.
Lee, S. H., and Shrestha, S. (2014). Application of micellar
enhanced ultrafiltration (MEUF) process for zinc (II) removal in synthetic
wastewater: Kinetics and two-parameter isotherm models. International Biodeterioration and Biodegradation, 95: 241 – 250.
41.
Robati, D. (2013). Pseudo-second-order kinetic equations for
modeling adsorption systems for removal of lead ions using multi-walled carbon
nanotube. Journal of Nanostructure in
Chemistry, 3(1): 55 – 61.
42.
Largitte, L. and Lodewyckx, P. (2015). Modeling the influence
of the operating conditions upon the sorption rate and the yield in the
adsorption of lead (II). Microporous and
Mesoporous Materials. 202: 147 – 154.
43.
Igberase, E., Osifo, P. and Ofomaja, A. (2014). The
adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous
solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1): 362 – 369.
44.
Lim, A. P., and Aris, A. Z. (2014). Continuous fixed-bed
column study and adsorption modeling: Removal of cadmium (II) and lead (II)
ions in aqueous solution by dead calcareous skeletons. Biochemical Engineering Journal, 87: 50 – 61 .
45.
Mousa, S. M., Ammar, N. S. and Ibrahim, H. A. (2016). Removal
of lead ions using hydroxyapatite nano-material prepared from phosphogypsum
waste. Journal of Saudi Chemical Society,
20(3): 357 –365.