Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 597 - 604

DOI: https://doi.org/10.17576/mjas-2017-2103-09

 

 

 

METALS CONTAMINATION USING Polymesoda expansa (MARSH CLAM) AS BIO-INDICATOR IN KELANTAN RIVER, MALAYSIA

 

(Pencemaran Logam di Sungai Kelantan, Malaysia Menggunakan Polymesoda expansa (Lokan) Sebagai Penunjuk Biologi)

 

Ong Meng Chuan1*, Muhammad Izzat Kamaruzaman1, Yong Jaw Chuen1, Kamaruzzaman Bin Yunus2, Joseph Bidai3

 

1School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

2Department of Marine Science, Kulliyyah of Science,

International Islamic Universiti Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Institute of Oceanography and Environment,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

 

*Corresponding author: ong@umt.edu.my

 

 

Received: 7 August 2016; Accepted: 13 April 2017

 

 

Abstract

Bivalve, such as marsh clam (Polymesoda expansa) feed by filtering most of the suspended particle in water that surrounding them. Lots of elements being trap into their body via this feeding habit including pollutant such as trace metals. Unfortunately, these marsh clams were taken directly by human as their daily diet. Due to its ability to filter water, marsh clam was used to monitor the level of trace metals in aquatic system in significant place such as industrial area. Therefore, this study was carried out at Kelantan River near to the industrial area in Pengkalan Chepa, Kelantan, Malaysia. A total of 80 marsh clams were collected from 4 different sites to represent a different environmental condition. The in-toto of the marsh clam were dissected and digest with suprapur nitric acid by using Teflon Bomb method. Six metals were determined by using Inductively Coupled Plasma Mass Spectrometry including chromium, iron, copper, cadmium, lead and zinc.  The highest mean concentration of all metals studied (Cr 45.03 µg/g dry weight; Fe 1.28 µg/g dry weight; Cu 21.8 µg/g dry weight; Cd 1.15 µg/g dry weight; Pb 2.31 µg/g dry weight; Zn 898 µg/g dry weight) in the marsh clam tissue was recorded at station 4 which is near to the industrial area discharge. Whereas, those concentration were lower at Station 1 and Station 2, which located at the upstream and far from the industrial area discharge. On the other hand, the size of marsh clam does not significantly correlate to the concentration of selected trace metals. Level of selected metals in some the samples were exceeded the permissible limit provide by Malaysia Food Safety and Food Regulation 1985 especially marsh clam collected from station near to industrial area. Therefore, marsh clam collected for consumption near to industrial area need to be continuously monitor to prevent any acute effect on human health risk.

 

Keywords:  Kelantan River, marsh clam, metals, permissible limit, human health risk

 

Abstrak

Kerang seperti lokan (Polymesoda expansa) memperolehi makanan melalui proses penapisan zarah-zarah terampai di dalam air di sekeliling mereka. Banyak unsur-unsur elemen yang terperangkap di dalam badan mereka melalui tabiat makan ini termasuklah logam surih. Malangnya, lokan ini telah diambil oleh manusia dan dijadikan sebagai diet harian mereka. Disebabkan keupayaan lokan ini untuk menapis air, lokan telah digunakan untuk memantau tahap pencemaran logam berat di dalam persekitaran akuatik terutamanya di kawasan perindustrian. Oleh itu, kajian ini telah dijalankan di Sungai Kelantan berhampiran dengan kawasan perindustrian di Pengkalan Chepa, Kelantan, Malaysia. Sebanyak 80 lokan yang dikutip dari 4 kawasan penyampelan untuk mewakili keadaan persekitaran yang berbeza. Keseluruhan tisu lembut lokan tersebut telah dikeluarkan dan dicerna dengan menggunakan kaedah Teflon bom dengan bantuan asid nitric suprapur.  Kepekatan 6 logam telah ditentukan menggunakan spekrometri jisim gandingan aruhan plasma termasuk logam kromium, ferum, kuprum, cadmium, plumbum dan zink. Purata kepekatan logam yang dikaji (Cr 45.03 µg/g berat kering; Fe 1.28 µg/g berat kering; Cu 21.8 µg/g berat kering; Cd 1.15 µg/g berat kering; Pb 2.31 µg/g berat kering; Zn 898 µg/g berat kering) di dalam tisu lokan tersebut dicatatkan di stesen 4 yang terletak berhampiran dengan pelepasan sisa kawasan perindustrian. Kepekatan logam adalah lebih rendah di dalam lokan yang dikutip dari Stesen 1 dan Stesen 2 yang terletak di hulu sungai dan jauh daripada kawasan pelepasan sisa perindustrian. Selain itu, saiz lokan tidak mempengaruhi kadar kepekatan logam yang dikaji. Tahap kepekatan logam yang dikaji didapati melebihi had yang ditetapkan oleh Peraturan Makanan Malaysia 1985 terutamanya lokan yang dikutip dari stesen berhampiran kawasan perindustrian. Oleh itu, lokan berhampiran kawasan perindustrian perlu dipantau untuk mengelakkan apa-apa kesan akut kepada risiko kesihatan manusia.

 

Kata kunci:  Sungai Kelantan, lokan, logam berat, had dibenarkan, risiko kesihatan manusia

 

References

1.       Cid, B. P., Boia, C., Pombo, L., and Rebelo, E. (2001). Determination of trace metals in fish species of the Ria de Aveiro (Portugal) by electro thermal atomic absorption spectrometry. Food Chemistry, 75(1): 93 – 100.

2.       Araya M, Pizarro F, Olivares M, Arredondo M, Gonzalez M. and Mendez, M.  (2006). Understanding copper homeostasis in humans and copper effects on health. Biology Research, (39): 183 – 187.

3.       Harris, E. D. (2001). Copper homeostasis: the role of cellular transporters. Nutrition Revision, (59): 281 – 285. 

4.       Ryan, N. H. (2012). What You Should Know About Heavy Metals. Retrieve from: http://www.bewholebewell.com/articles/WhatYouShouldKnowAboutHeavyMetals.pdf. Date access 26 September 2013.

5.       Freedman, B. (1989). Environmental Ecology. The impact of pollution and other stresses on ecosystem structure and function. London: Academic Press, (4): pp. 13 – 16.

6.       Jordao, C. P., Pereira M.G., Bellato C. R., Pereira, J. L., and Matos, A. T. (2002). Assessment of water systems for contaminants from domestic and industrial sewages. Environmental Monitoring Assessment, (8): 33 – 36.

7.       Tuzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, (13): 17 – 21.

8.       Castro-González, M. I. and Méndez-Armenta, M. (2008). Heavy metals: implications associated to fish consumption. Environmental Toxicology and Pharmacology, (26): 263 – 271.

9.       Britton, G., Liaaen-Jensen, S. and Pfander, H. (2009).  Carotenoids:  Nutrition and Health. Birkhauser Verlag. United States.

10.    Holland, B., Brown, J. and Buss, D. H., (1993). Fish and Fish products. Royal Society of Chemistry and Ministry of Agriculture. Fisheries and Food, (2): 36 – 37.

11.    World Health Organization. (2003). Concise International Chemical Assessment Document 55.  Polychlorinated biphrnyls: human health aspect. Retrieve from: http://www.inchem.org/documents/cicads/ cicads/ cicad55.htm#10.0. Date access 26 September 2013.

12.    Ikem, A. and Egiebor, N. O. (2005). Assessment of trace elements in canned fishes (Mackerel, Tuna, Salmon, Sardines and Herrings) marketed in Georgia and Alabama (United States of America). Journal of Food Composition and Analysis, (3): 34 – 37.

13.    Guerin, T., Chekri, R., Vastel, C., Sirot, V., Volatier, J., Leblanc, J. and Noel, L. (2011). Determination  of 20  trace elements  in  fish  and  other  seafood  from the  French market. Food Chemistry, (11): 12 –16.

14.    Boscolo, R., Cacciatore, F., Berto, D. and Giani, M. (2007). Polychlorinated biphenyls in clams Tapes philippinarum cultured in the Venice Lagoon (Italy): Contamination levels and dietary exposure assessment. Food and Chemical Toxicology, (45): 1065 – 1075.

15.    Leblanc J. C., Guerin T., Noel L., Calamassi-Tran G., Volatier J. C. and Verger P. (2005). Dietary exposure estimates of 18 elements from the 1st French total diet study. Food Additives and Contaminants, (9): 22 – 25.

16.    Goldberg, E. D., Koide, M., Hodge, V., Flegal, A. R. and Martin, J. H. (1983). U. S. Mussel Watch: 1977-1978 results on trace metals and radionuclides. Estuarine, Coastal and Shelf Science, (12): 42 –45.

17.    Phillips, D. J. (1991). Selected trace elements and the use of biomonitors in subtropical and tropical marine ecosystems. In Reviews of Environmental Contamination and Toxicology. Springer New York: pp. 105 – 129. 

18.    Alina, M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H. and Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of Malacca. International Food Research Journal, (19): 135 – 140.

19.    Joiris, C. R., Azokwu, M. I., Otchere, F. A. and Ali, I. B. (1998). Mercury in the bivalve Anadara (Senilia) senilis from Ghana and Nigeria. Science of the Total Environment, (224): 181 – 188.

20.    Orren, M. J., Eagle, G. A., Hennig, H. F, Green, A. (1980). Variations in trace metal content of the mussel Choromytilus meridionalis (Kr.) with season and sex. Marine Pollution Bulletin, (11): 253 – 257.

21.    Zhang, I. and Wong, M. H. (2007). Environmental mercury contamination in China: Sources and impacts. Environmental International, (33): 108 – 121.

22.    Lewis, A. G. (1995). Copper in water and aquatic environments, International Copper Association, LTD. New York, NY: pp. 1 – 2.

23.    Agency for Toxic Substance and Disease Register (2003). Toxicological profile for arsenic. US Department of Health and Humans Services, Public Health Human Services, Centres for Diseases Control, Atlanta.

24.    Ehrlich H. L. (1996). How microbes influence mineral growth and dissolution: Chemical and biological control on mineral growth and dissolution kinetics, American chemical society meeting. Chemical Geology, (132): 5 – 9.

25.    Scientific Committee on Food (2003). Tolerable upper intake level of trivalent chromium. SCF/CS/NUT/UPPLEV/67 Final. European Commission. Health & Consumer Protection Directorate-General. Retrieve from http://europa.eu.int/comm/food /fs/sc/scf/out80_en.html, 2003. Date access 3 April 2014.

26.    Hardy D. H., Myers J. and Stokes C. (2008) Heavy metals in North Carolina soils: Occurrence and significance. North Carolina Department of Agriculture and Consumer Services. Retrieve from: www.ncagr.gov/agronomi/. Date access on 28 March 2014.

27.    Kamaruzzaman, B. Y., Shuhada, N. T., Akbar, B., Shahbudin, S., Jalal, K. C. A., Ong, M. C., Al-Barwani, S. M. and Goddard, J. S. (2011). Spatial concentrations of lead and copper in bottom sediments of Langkawi coastal area, Malaysia. Research Journal in Environmental Science, (5): 179 –186.

 




Previous                    Content                    Next