Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 597 - 604
DOI:
https://doi.org/10.17576/mjas-2017-2103-09
METALS CONTAMINATION USING Polymesoda expansa (MARSH CLAM) AS
BIO-INDICATOR IN KELANTAN RIVER, MALAYSIA
(Pencemaran Logam di Sungai Kelantan, Malaysia Menggunakan Polymesoda expansa
(Lokan) Sebagai Penunjuk Biologi)
Ong Meng Chuan1*, Muhammad
Izzat Kamaruzaman1, Yong Jaw Chuen1, Kamaruzzaman Bin
Yunus2, Joseph Bidai3
1School of Marine and Environmental
Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
2Department of Marine Science, Kulliyyah
of Science,
International Islamic Universiti Malaysia, Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
3Institute of Oceanography and
Environment,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
*Corresponding author: ong@umt.edu.my
Received: 7
August 2016; Accepted: 13 April 2017
Abstract
Bivalve,
such as marsh clam (Polymesoda expansa)
feed by filtering most of the suspended particle in water that surrounding
them. Lots of elements being trap into their body via this feeding habit
including pollutant such as trace metals. Unfortunately, these marsh clams were
taken directly by human as their daily diet. Due to its ability to filter
water, marsh clam was used to monitor the level of trace metals in aquatic
system in significant place such as industrial area. Therefore, this study was
carried out at Kelantan River near to the industrial area in Pengkalan Chepa,
Kelantan, Malaysia. A total of 80 marsh clams were collected from 4 different
sites to represent a different environmental condition. The in-toto of the
marsh clam were dissected and digest with suprapur nitric acid by using Teflon
Bomb method. Six metals were determined by using Inductively Coupled Plasma
Mass Spectrometry including chromium, iron, copper, cadmium, lead and
zinc. The highest mean concentration of
all metals studied (Cr 45.03 µg/g dry weight; Fe 1.28 µg/g dry weight; Cu 21.8
µg/g dry weight; Cd 1.15 µg/g dry weight; Pb 2.31 µg/g dry weight; Zn 898 µg/g
dry weight) in the marsh clam tissue was recorded at station 4 which is near to
the industrial area discharge. Whereas, those concentration were lower at
Station 1 and Station 2, which located at the upstream and far from the
industrial area discharge. On the other hand, the size of marsh clam does not
significantly correlate to the concentration of selected trace metals. Level of
selected metals in some the samples were exceeded the permissible limit provide
by Malaysia Food Safety and Food Regulation 1985 especially marsh clam
collected from station near to industrial area. Therefore, marsh clam collected
for consumption near to industrial area need to be continuously monitor to
prevent any acute effect on human health risk.
Keywords: Kelantan River, marsh clam, metals,
permissible limit, human health risk
Abstrak
Kerang seperti lokan (Polymesoda expansa) memperolehi makanan
melalui proses penapisan zarah-zarah terampai di dalam air di sekeliling
mereka. Banyak unsur-unsur elemen yang terperangkap di dalam badan mereka
melalui tabiat makan ini termasuklah logam surih. Malangnya, lokan ini telah
diambil oleh manusia dan dijadikan sebagai diet harian mereka. Disebabkan
keupayaan lokan ini untuk menapis air, lokan telah digunakan untuk memantau
tahap pencemaran logam berat di dalam persekitaran akuatik terutamanya di
kawasan perindustrian. Oleh itu, kajian ini telah dijalankan di Sungai Kelantan
berhampiran dengan kawasan perindustrian di Pengkalan Chepa, Kelantan,
Malaysia. Sebanyak 80 lokan yang dikutip dari 4 kawasan penyampelan untuk
mewakili keadaan persekitaran yang berbeza. Keseluruhan tisu lembut lokan
tersebut telah dikeluarkan dan dicerna dengan menggunakan kaedah Teflon bom
dengan bantuan asid nitric suprapur. Kepekatan
6 logam telah ditentukan menggunakan spekrometri jisim gandingan aruhan plasma
termasuk logam kromium, ferum, kuprum, cadmium, plumbum dan zink. Purata
kepekatan logam yang dikaji (Cr 45.03 µg/g berat kering; Fe 1.28 µg/g berat kering;
Cu 21.8 µg/g berat kering; Cd 1.15 µg/g berat kering; Pb 2.31 µg/g berat
kering; Zn 898 µg/g berat kering) di dalam tisu lokan tersebut dicatatkan di
stesen 4 yang terletak berhampiran dengan pelepasan sisa kawasan perindustrian.
Kepekatan logam adalah lebih rendah di dalam lokan yang dikutip dari Stesen 1
dan Stesen 2 yang terletak di hulu sungai dan jauh daripada kawasan pelepasan
sisa perindustrian. Selain itu, saiz lokan tidak mempengaruhi kadar kepekatan
logam yang dikaji. Tahap kepekatan logam yang dikaji didapati melebihi had yang
ditetapkan oleh Peraturan Makanan Malaysia 1985 terutamanya lokan yang dikutip
dari stesen berhampiran kawasan perindustrian. Oleh itu, lokan berhampiran
kawasan perindustrian perlu dipantau untuk mengelakkan apa-apa kesan akut
kepada risiko kesihatan manusia.
Kata kunci: Sungai Kelantan, lokan, logam berat, had
dibenarkan, risiko kesihatan manusia
References
1.
Cid,
B. P., Boia, C., Pombo, L., and Rebelo, E. (2001). Determination of trace
metals in fish species of the Ria de Aveiro (Portugal) by electro thermal
atomic absorption spectrometry. Food
Chemistry, 75(1): 93 – 100.
2.
Araya
M, Pizarro F, Olivares M, Arredondo M, Gonzalez M. and Mendez, M. (2006). Understanding copper homeostasis in
humans and copper effects on health. Biology
Research, (39): 183 – 187.
3.
Harris,
E. D. (2001). Copper homeostasis: the role of cellular transporters. Nutrition Revision, (59): 281 – 285.
4.
Ryan,
N. H. (2012). What You Should Know About Heavy Metals. Retrieve from:
http://www.bewholebewell.com/articles/WhatYouShouldKnowAboutHeavyMetals.pdf. Date
access 26 September 2013.
5.
Freedman,
B. (1989). Environmental Ecology. The impact of pollution and other stresses on
ecosystem structure and function. London: Academic Press, (4): pp. 13 – 16.
6.
Jordao,
C. P., Pereira M.G., Bellato C. R., Pereira, J. L., and Matos, A. T. (2002).
Assessment of water systems for contaminants from domestic and industrial
sewages. Environmental Monitoring
Assessment, (8): 33 – 36.
7.
Tuzen,
M. (2003). Determination of heavy metals in fish samples of the middle Black
Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, (13): 17 – 21.
8.
Castro-González,
M. I. and Méndez-Armenta, M. (2008). Heavy metals: implications associated to
fish consumption. Environmental
Toxicology and Pharmacology, (26): 263 – 271.
9.
Britton,
G., Liaaen-Jensen, S. and Pfander, H. (2009).
Carotenoids: Nutrition and
Health. Birkhauser Verlag. United States.
10.
Holland,
B., Brown, J. and Buss, D. H., (1993). Fish and Fish products. Royal Society of
Chemistry and Ministry of Agriculture. Fisheries
and Food, (2): 36 – 37.
11.
World
Health Organization. (2003). Concise International Chemical Assessment Document
55. Polychlorinated biphrnyls: human
health aspect. Retrieve from: http://www.inchem.org/documents/cicads/ cicads/ cicad55.htm#10.0.
Date access 26 September 2013.
12.
Ikem,
A. and Egiebor, N. O. (2005). Assessment of trace elements in canned fishes
(Mackerel, Tuna, Salmon, Sardines and Herrings) marketed in Georgia and Alabama
(United States of America). Journal of Food
Composition and Analysis, (3): 34 – 37.
13.
Guerin,
T., Chekri, R., Vastel, C., Sirot, V., Volatier, J., Leblanc, J. and Noel, L.
(2011). Determination of 20 trace elements in
fish and other
seafood from the French market. Food Chemistry, (11): 12 –16.
14.
Boscolo,
R., Cacciatore, F., Berto, D. and Giani, M. (2007). Polychlorinated biphenyls
in clams Tapes philippinarum cultured in the Venice Lagoon (Italy):
Contamination levels and dietary exposure assessment. Food and Chemical Toxicology, (45): 1065 – 1075.
15.
Leblanc J. C.,
Guerin T., Noel L., Calamassi-Tran G., Volatier J. C. and Verger P. (2005). Dietary exposure
estimates of 18 elements from the 1st French total diet study. Food Additives and Contaminants, (9): 22
– 25.
16.
Goldberg,
E. D., Koide, M., Hodge, V., Flegal, A. R. and Martin, J. H. (1983). U. S. Mussel
Watch: 1977-1978 results on trace metals and radionuclides. Estuarine, Coastal and Shelf Science, (12):
42 –45.
17.
Phillips,
D. J. (1991). Selected trace elements and the use of biomonitors in subtropical
and tropical marine ecosystems. In Reviews of Environmental Contamination and
Toxicology. Springer New York: pp. 105 – 129.
18.
Alina,
M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H. and
Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in
selected marine fish and shellfish along the straits of Malacca. International Food Research Journal,
(19): 135 – 140.
19.
Joiris,
C. R., Azokwu, M. I., Otchere, F. A. and Ali, I. B. (1998). Mercury in the
bivalve Anadara (Senilia) senilis
from Ghana and Nigeria. Science of the
Total Environment, (224): 181 – 188.
20.
Orren,
M. J., Eagle, G. A., Hennig, H. F, Green, A. (1980). Variations in trace metal
content of the mussel Choromytilus meridionalis (Kr.) with season and sex. Marine Pollution Bulletin, (11): 253 – 257.
21.
Zhang,
I. and Wong, M. H. (2007). Environmental mercury contamination in China:
Sources and impacts. Environmental
International, (33): 108 – 121.
22.
Lewis,
A. G. (1995). Copper in water and aquatic environments, International Copper
Association, LTD. New York, NY: pp. 1 – 2.
23.
Agency
for Toxic Substance and Disease Register (2003). Toxicological profile for
arsenic. US Department of Health and Humans Services, Public Health Human
Services, Centres for Diseases Control, Atlanta.
24.
Ehrlich
H. L. (1996). How microbes influence mineral growth and dissolution: Chemical
and biological control on mineral growth and dissolution kinetics, American
chemical society meeting. Chemical
Geology, (132): 5 – 9.
25.
Scientific
Committee on Food (2003). Tolerable upper intake level of trivalent chromium.
SCF/CS/NUT/UPPLEV/67 Final. European Commission. Health & Consumer
Protection Directorate-General. Retrieve from http://europa.eu.int/comm/food
/fs/sc/scf/out80_en.html, 2003. Date access 3 April 2014.
26.
Hardy
D. H., Myers J. and Stokes C. (2008) Heavy metals in North Carolina soils:
Occurrence and significance. North Carolina Department of Agriculture and
Consumer Services. Retrieve from: www.ncagr.gov/agronomi/. Date access on 28
March 2014.
27.
Kamaruzzaman,
B. Y., Shuhada, N. T., Akbar, B., Shahbudin, S., Jalal, K. C. A., Ong, M. C.,
Al-Barwani, S. M. and Goddard, J. S. (2011). Spatial concentrations of lead and
copper in bottom sediments of Langkawi coastal area, Malaysia. Research Journal in Environmental Science,
(5): 179 –186.