Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 585 - 596

DOI: https://doi.org/10.17576/mjas-2017-2103-08

 

 

 

THE ANALYSIS OF THERMAL DECOMPOSITION PRODUCTS GENERATED FROM PORCINE TISSUES EXPOSED TO OUTDOOR BURNING CONDITIONS

 

(Analisis Produk Penguraian Haba Yang Terhasil Daripada Tisu Khinzir Yang Terdedah Kepada Pembakaran Terbuka)

 

 Gina Francesca Gabriel, Azima Ismail, Atiah Ayuni, Khairul Osman, Noor Hazfalinda Hamzah*

 

Forensic Science Program, Faculty of Health Sciences,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: raviera@yahoo.com

 

 

Received: 28 August 2016; Accepted: 16 March 2017

 

 

Abstract

Volatile products commonly known as pyrolytic products, are thermal decomposition products generated from the various fuels that are present at a fire scene due to heat exposure. When a fire scene involves human remains, the volatile species generated from the remains can be mistaken with others residues due to the presence of interfering products or ignitable liquid residues from the fire scene. Knowledge of the type of products generated from human remains in real life fire scenarios is crucial under these circumstances. Thus, this study was executed to test the robustness and validity of the pyrolytic data generated from porcine tissue under indoor laboratory burning conditions to those generated under outdoor burning conditions. Porcine bone samples were burnt under outdoor conditions until the ignition of fat occurred (temperatures exceeding 250 °C). The pyrolytic products generated were absorbed onto activated carbon tablets that were incubated in an oven for 16 hours at 80 °C and then desorbed with pentane and injected into the Gas Chromatography-Mass Spectrometry (GC-MS). The 60 pyrolytic profiles obtained were in the range of n-alkanes, n-alkenes, n-aldehydes, aromatics and nitriles, similar to those obtained from the indoor laboratory burning data but with the additional presence of n-aldehydes. Results from this study has indicated that the human pyrolytic data model generated indoors is a good representative of outdoor burning conditions and has also successfully clarified the inconsistencies in terms of the presence and absence of n-aldehydes from porcine and human pyrolytic data.

 

Keywords: thermal decomposition, porcine bone, pyrolytic products, activated carbon tablet, gas chromatography-mass spectrometry

 

Abstrak

Sebatian meruap mudah kebiasaannya dikenali sebagai produk pirolitik merupakan produk penguraian menggunakan haba yang terhasil daripada pelbagai jenis bahan api yang terdapat di sekitar kawasan kebakaran disebabkan oleh pendedahan kepada haba. Apabila terdapat sisa kebakaran yang melibatkan tulang manusia, spesis sebatian mudah meruap yang dikesan boleh disalah anggap dengan sisa lain disebabkan produk luar atau pun sisa cecair mudah terbakar. Oleh yang demikian, kajian ini bertujuan untuk mengenalpasti ketepatan dan kesahihan data pirolitik yang terhasil daripada tisu khinzir melalui pembakaran secara tertutup di dalam makmal dengan pembakaran secara terbuka. Tulang khinzir dibakar secara terbuka sehingga suhu nyalaan pembakaran lemak tulang berlaku (suhu melebihi 250 °C). Produk pirolisis yang dijana diserap menggunakan penjerapan karbon teraktif dalam bentuk tablet dengan menggunakan inkubator selama 16 jam pada suhu 80 °C dan seterusnya dinyaherap dengan pentana dan dianalisis menggunakan Kromatografi Gas-Spektrometri Jisim (GC-MS). Sejumlah 60 jenis produk pirolitik yang terhasil adalah sebatian kompaun n-alkana, n-alkena, n-aldehid, aromatik dan sebatian nitril. Produk yang terhasil adalah sama dengan data pembakaran di dalam makmal tetapi dengan penambahan kehadiran n-aldehid. Keputusan kajian ini menunjukkan bahawa model data pirolitik manusia yang terhasil daripada pembakaran dalam makmal boleh menjadi rujukan yang baik untuk situasi kebakaran terbuka, dan berjaya menjelaskan percanggahan dari segi kehadiran dan ketiadaan n-aldehid daripada data pirolitik khinzir dan manusia.

 

Kata kunci: penguraian menggunakan haba, tulang khinzir, produk pirolitik, penjerapan karbon teraktif, kromatografi gas-spektrometri jisim

 

References

1.       Fanton, L., Jdeed, K., Tilhet-Coartet, S. and Malicier, D. (2006). Criminal Burning. Forensic Science Institute, 158 (2-3): 87 – 93.

2.       Porta, D., Poppa, P., Regazzola, V., Gibelli, D., Schillaci, D. R., Amadasi, A., Magli, F. and Cattaneo, C. (2013). The importance of an anthropological scene of crime investigation in the case of burnt remains in vehicles: 3 case studies. American Journal of Forensic Medicine and Pathology, 34(3): 195 – 200.

3.       Ubelaker, D. H. (2009). The forensic evaluation of burned skeletal remains: A synthesis. Forensic Science Institute, 183 (1-3): 1 – 5.

4.       Knight, B. and Saukko, P. J. (2004). Knight's Forensic Pathology. Third ed. Edward Arnold Publisher Ltd, London.

5.       Holden, J. L., Phakey, P. P. and Clement, J. G. (1995). Scanning electron microscope observations of heat-treated human bone. Forensic Science Institute, 74 (1-2): 29 – 45.

6.       National Centre For Forensic Science (NCFS). (2006). Substrate database. University of Central Florida.

7.       Gabriel, G. F. (2015). The analysis and discrimination of pyrolysis products from biological and non-biological sources. Central of Forensic Science, Department of Pure and Applied Chemistry. University of Strathclyde.

8.       DeHaan, J. D., Brien, D. J. and Large, R. (2004). Volatile organic compounds from the combustion of human and animal tissue. Science and Justice, 44 (4): 223 – 236.

9.       Agu, K. (2011). Investigation of the thermal degradation products of bone. Centre for Forensic Science, Department of Pure Science and Apllied Chemistry. University of Strathclyde.

10.    American Society for Testing and Materials (ASTM) International E1412-07 (2012). Standard practice for separation of ignitable liquid residues from fire debris samples by passive headspace concentration with activated charcoal. American Society for Testing and Materials (ASTM) International. West Conshohocken, PA.

11.    Pearce, A. I., Richards, R. G., Milz, S., Schneider, E. and Pearce, S. G. (2007). Animal models for implant biomaterial research in bone: A review. Europe Cells and Materials Journal, 13: 1 – 10.

12.    Mosekilde, L., Kragstrup, J. and Richards, A. (1987). Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcified Tissue International, 40(6): 318 –322.

13.    Thorwarth, M., Schultze-Mosgau, S., Kessler, P., Wiltfang, J. and Schlegel, K. A. (2005). Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. Journal of Oral and Maxillofacial Surgery, 63(11): 1626 – 1633.

14.    Stauffer, E. (2003) Concept of pyrolysis for fire debris analysis. Science and Justice. 43 (1): 29-40.

15.    National Fire Protection Association (NFPA). (1990). Fire Protection Handbook. National Fire Protection Association (NFPA), Standard Publishing Company.

16.    Welker, J. R. and Sliepcevich, C. (1966). Burning rates and heat transfer from wind-blown flames. Fire Technology, 2(3): 211 – 218.

17.    Purevsuren, B., Avid, B., Garelmaa, T., Davaajay, Y., Morgan, T., Herod, A. and Kandiyoti, R. (2004). The characterisation of tar from the pyrolysis of animal bones. Fuel, 83 (7-8): 799 – 805.

 




Previous                    Content                    Next