Malaysian Journal of Analytical Sciences Vol 21 No 3
(2017): 585 - 596
DOI:
https://doi.org/10.17576/mjas-2017-2103-08
THE ANALYSIS OF THERMAL
DECOMPOSITION PRODUCTS GENERATED FROM PORCINE TISSUES EXPOSED TO OUTDOOR
BURNING CONDITIONS
(Analisis Produk
Penguraian Haba Yang Terhasil Daripada Tisu Khinzir Yang Terdedah Kepada
Pembakaran Terbuka)
Gina Francesca Gabriel, Azima Ismail, Atiah
Ayuni, Khairul Osman, Noor Hazfalinda Hamzah*
Forensic Science Program, Faculty of Health Sciences,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: raviera@yahoo.com
Received: 28
August 2016; Accepted: 16 March 2017
Abstract
Volatile products commonly known as pyrolytic
products, are thermal decomposition products generated from the various fuels
that are present at a fire scene due to heat exposure. When a fire scene
involves human remains, the volatile species generated from the remains can be
mistaken with others residues due to the presence of interfering products or
ignitable liquid residues from the fire scene. Knowledge of the type of
products generated from human remains in real life fire scenarios is crucial
under these circumstances. Thus, this study was executed to test the robustness
and validity of the pyrolytic data generated from porcine tissue under indoor
laboratory burning conditions to those generated under outdoor burning
conditions. Porcine bone samples were burnt under outdoor conditions until the
ignition of fat occurred (temperatures exceeding 250 °C). The pyrolytic products
generated were absorbed onto activated carbon tablets that were incubated in an
oven for 16 hours at 80 °C and then desorbed with pentane and injected into the
Gas Chromatography-Mass Spectrometry (GC-MS). The 60 pyrolytic profiles
obtained were in the range of n-alkanes,
n-alkenes, n-aldehydes, aromatics and nitriles, similar to those obtained
from the indoor laboratory burning data but with the additional presence of n-aldehydes. Results from this study has
indicated that the human pyrolytic data model generated indoors is a good
representative of outdoor burning conditions and has also successfully
clarified the inconsistencies in terms of the presence and absence of n-aldehydes from porcine and human
pyrolytic data.
Keywords:
thermal
decomposition, porcine bone, pyrolytic products, activated carbon tablet, gas
chromatography-mass spectrometry
Abstrak
Sebatian meruap mudah kebiasaannya
dikenali sebagai produk pirolitik merupakan produk penguraian menggunakan haba
yang terhasil daripada pelbagai jenis bahan api yang terdapat di sekitar
kawasan kebakaran disebabkan oleh pendedahan kepada haba. Apabila terdapat sisa
kebakaran yang melibatkan tulang manusia, spesis sebatian mudah meruap yang
dikesan boleh disalah anggap dengan sisa lain disebabkan produk luar atau pun
sisa cecair mudah terbakar. Oleh yang demikian, kajian ini bertujuan untuk
mengenalpasti ketepatan dan kesahihan data pirolitik yang terhasil daripada
tisu khinzir melalui pembakaran secara tertutup di dalam makmal dengan
pembakaran secara terbuka. Tulang khinzir dibakar secara terbuka sehingga suhu
nyalaan pembakaran lemak tulang berlaku (suhu melebihi 250 °C). Produk
pirolisis yang dijana diserap menggunakan penjerapan karbon teraktif dalam
bentuk tablet dengan menggunakan inkubator selama 16 jam pada suhu 80 °C dan
seterusnya dinyaherap dengan pentana dan dianalisis menggunakan Kromatografi
Gas-Spektrometri Jisim (GC-MS). Sejumlah 60 jenis produk pirolitik yang
terhasil adalah sebatian kompaun n-alkana,
n-alkena, n-aldehid, aromatik dan sebatian nitril. Produk yang terhasil
adalah sama dengan data pembakaran di dalam makmal tetapi dengan penambahan
kehadiran n-aldehid. Keputusan kajian
ini menunjukkan bahawa model data pirolitik manusia yang terhasil daripada
pembakaran dalam makmal boleh menjadi rujukan yang baik untuk situasi kebakaran
terbuka, dan berjaya menjelaskan percanggahan dari segi kehadiran dan ketiadaan
n-aldehid daripada data pirolitik
khinzir dan manusia.
Kata
kunci: penguraian
menggunakan haba, tulang khinzir, produk pirolitik, penjerapan karbon teraktif,
kromatografi gas-spektrometri jisim
References
1. Fanton,
L., Jdeed, K., Tilhet-Coartet, S. and Malicier, D. (2006). Criminal Burning. Forensic
Science Institute, 158 (2-3): 87
– 93.
2. Porta,
D., Poppa, P., Regazzola, V., Gibelli, D., Schillaci, D. R., Amadasi, A.,
Magli, F. and Cattaneo, C. (2013). The importance of an anthropological scene
of crime investigation in the case of burnt remains in vehicles: 3 case
studies. American Journal of Forensic Medicine
and Pathology, 34(3): 195 – 200.
3. Ubelaker,
D. H. (2009). The forensic evaluation of burned skeletal remains: A synthesis. Forensic Science Institute, 183 (1-3): 1 – 5.
4. Knight,
B. and Saukko, P. J. (2004). Knight's Forensic Pathology. Third ed. Edward Arnold Publisher Ltd, London.
5. Holden,
J. L., Phakey, P. P. and Clement, J. G. (1995). Scanning electron microscope
observations of heat-treated human bone. Forensic
Science Institute, 74 (1-2): 29 – 45.
6. National
Centre For Forensic Science (NCFS). (2006). Substrate database. University of
Central Florida.
7. Gabriel,
G. F. (2015). The analysis and discrimination of pyrolysis products from
biological and non-biological sources. Central
of Forensic Science, Department of Pure and Applied Chemistry. University
of Strathclyde.
8. DeHaan,
J. D., Brien, D. J. and Large, R. (2004). Volatile organic compounds from the
combustion of human and animal tissue. Science
and Justice, 44 (4): 223 – 236.
9. Agu,
K. (2011). Investigation of the thermal degradation products of bone. Centre for Forensic Science, Department of
Pure Science and Apllied Chemistry. University
of Strathclyde.
10. American
Society for Testing and Materials (ASTM) International E1412-07 (2012). Standard practice for separation of
ignitable liquid residues from fire debris samples by passive headspace
concentration with activated charcoal. American
Society for Testing and Materials (ASTM) International. West Conshohocken,
PA.
11. Pearce,
A. I., Richards, R. G., Milz, S., Schneider, E. and Pearce, S. G. (2007).
Animal models for implant biomaterial research in bone: A review. Europe Cells and Materials Journal, 13:
1 – 10.
12. Mosekilde,
L., Kragstrup, J. and Richards, A. (1987). Compressive strength, ash weight,
and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcified Tissue International, 40(6):
318 –322.
13. Thorwarth,
M., Schultze-Mosgau, S., Kessler, P., Wiltfang, J. and Schlegel, K. A. (2005).
Bone regeneration in osseous defects using a resorbable nanoparticular
hydroxyapatite. Journal of Oral and
Maxillofacial Surgery, 63(11): 1626 – 1633.
14. Stauffer,
E. (2003) Concept of pyrolysis for
fire debris analysis. Science and
Justice. 43 (1): 29-40.
15. National
Fire Protection Association (NFPA). (1990). Fire Protection Handbook. National Fire Protection Association
(NFPA), Standard Publishing Company.
16. Welker,
J. R. and Sliepcevich, C. (1966). Burning rates and heat transfer from
wind-blown flames. Fire Technology, 2(3):
211 – 218.
17. Purevsuren,
B., Avid, B., Garelmaa, T., Davaajay, Y., Morgan, T., Herod, A. and Kandiyoti,
R. (2004). The characterisation of tar from the pyrolysis of animal bones. Fuel, 83 (7-8): 799 – 805.