Sains Malaysiana 29: 145-161 (2000) Sains Fizis dan Gunaan /
Physical and Applied Sciences
Modelling of Stark Effect in InAs-AlGaSb
Multi-Quantum Wells
Geri Kibe AK Gopir
Faculty of Life Sciences
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor D.E. Malaysia
ABSTRACT
The Stark effectina (20)InAs(6)As-(6)Al0.1Ga0.9 Sb multi-quantum well structure was theoretically modelled using the electric-field-perturbed formulation of the empirical pseudopotential method. An external electric field of up to 4.0 x 1()5 V cm-! was applied along the axis of the multi-quantum well structure and its effect on the energy level, localisation and optical transition of the lowest electron and hole states were investigated. The perturbation produced Wannier-Stark localisation and a red Stark shift for this type II semiconductor heterostructure. The calculated optical gap decreased down to 10 meV with the corresponding principal momentum matrix elements, along x polarisation, remain basically constant at a.u.(atomic unit). This property makes the III-V semiconductor heterostructure potentially attractive for use as a field-tunable device in the infrared spectra of 10-100µm.
ABSTRAK
Kesan Stark dalam suatu struktur telaga kuantum berbilang (20)InAs(6)As-(6)Al0.1 Ga0.9 Sb telah dikaji secara teori berdasarkan rumusan usikan medan elektrik bagi kaedah pseudokeupayaan empirik. Satu medan elektrik luaran sehingga 4.0 x 105 V cm-1 telah dikenakan di sepanjang paksi struktur telaga kuantum berbilang dan kesannya ke atas aras tenaga, pelokalan dan peralihan optik bagi keadaan-keadaan elektron dan lohong yang terendah telah diselidiki. Usikan ini telah menghasilkan pelokalan Wannier-Stark dan satu anjakan Stark merah bagi heterostruktur semikonduktor jenis II ini. Jurang optik kiraan telah turun sehingga 10 meV dengan unsur matriks momentum utama yang sepadan, di sepanjang pengkutuban x, agak malar pada (unit atom). Sifat ini menjadikan heterostruktur semikonduktor III-V ini berpotensi untuk digunakan sebagai peranti tertala medan bagi spektrum inframerah pada 10-100 µm.
RUJUKAN/REFERENCES
Austin, E. J. & Jaros, M. 1987. Electronic structure and transport properties of GaAsGaAAs superlattices in high perpendicular electric fields. J. Appl. Phys. 62: 558-564.
Bastard, G., Mendez, E. E., Chang, L. L. & Esaki, L. 1983. Variational calculations on a quantum well in an electric field. Phys. Rev. B28: 3241-3245.
Bleuse, J., Bastard, G. & Voisin, P.1988. Electric-field-induced localization and oscillatory electro-optical properties of semiconductor superlattices. Phys. Rev. Lett. 60: 220-223.
Dignam, M. M. & Sipe, J. E. 1991. Exciton Stark ladder in semiconductor superlattices. Phys. Rev. B43: 4097-4112.
Grimmeiss, H. G., Nagesh, V., Presting, H., Kibbel, H. & Kasper, E. 1992. Optical studies of short-period Si/Ge superlattices by photocapacitance. Phys. Rev. B45: 1236-1239.
Hagon, J. P. & Jaros, M. 1990. Stark shifts in GaAs-Ga1.xAlxAs finite-length superlattices. Phys. Rev. B41: 2900-2905.
Hagon, J. P., Jaros, M. & Herbert, D. C. 1989. Effect of band structure on Stark shifts in GaAs quantum wells. Phys. Rev. B40: 6420-6423.
Hagon, J. P., Turton, R. J., Miloszewski, A. T., Elfardag, G. S. M. & Jaros, M. 1994. The effect of an electric field on optical spectra and transmission in Si-Si1-xGex quantum well structures. Superlattices and microstructures 16: 125-131.
Hamaguchi, C., Yamaguchi, M., Morifuji, M., Kubo, H., Taniguchi, K., Gmachi, C. & Gornik, E. 1994. Wannier-Stark effect in superlattices. Semicond. Sci. Technol. 9: 1994-1998.
Harrison, P. 1991. Electronic and Optical Properties of Semiconductor Superlattices. Ph. D. Thesis. University of Newcastle Upon Tyne, U. K.
Jaros, M., Beavis, A.W., Hagon, J. P., Turton, R. J., Miloszewski, A. & Wong, K. B. 1992. Quantitative theory of optical properties of Si-Ge heterostructures. Thin Solid Films. 222: 205-208.
Jaros, M. & Wong, K. B. 1984. New electron states in GaAs-GaxA1-x.As superlattice. J. Phys. C: Solid State Phys. 17: L765-L769.
Jaros, M., Wong, K. B. & Gell, M. A. 1985. Electronic structure of GaAs-GaxA11-xAs,. As quantum well and sawtooth superlattices. Phys. Rev. B31: 1205-1207.
Mendez, E. E., Agullo-Rueda, F. & Hong, J. M. 1988. Stark localization in GaAsGaAIAs superlattices under an electric field. Phys. Rev. Let. 60: 2426-2429.
Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H. & Burrus, A. C. 1985. Electric field dependence of optical properties near the band gap of quantum-well structures. Phys. Rev. B32: 1043-1058.
Morifuji, M., Yamaguchi, M., Taniguchi, K. & Hamaguchi, C. 1994. Electric-field induced Q-X mixing between Stark ladders in short-period GaAs/AIAssuperlattices. Phys. Rev. B50: 8722-8726.
Satzke, K., Weiser, G., Stolz, W. & Ploog, K. 1991. Optical study of the electronic states of In0.53Ga0.47As/In0.52AI0.48As quantum wells in high electric fields. Phys. Rev. B43: 2263-2271.
Sze, S. M., 1990. Ed. High Speed Semiconductor Devices. New York: Wiley Interscience.
Van de Walle, C. G. 1989. Band lineups and deformation potentials in the modelsolid theory. Phys. Rev. B39: 1871-1883.
Wong, K. B., Gopir, G. K. A., Hagon, J. P. & Jaros, M. 1994. Absorption coefficient and electric-field-induced localization in InAs-AIGaSb multi-quantum well structures. Semicond. Sci. Technol. 9: 2210-2216.
Yamaguchi, M., Nagasawa, H., Morifuji, M., Taniguchi, K., Hamaguchi, c., Gmachi, C. & Gornik, E. 1994. Stark-ladder transition in type-II (GaAs)8/(AIAs)8 superlattice. Semicond. Sci. Technol. 9: 1810-1814.
Yamanaka, K., Fukunaga, T., Tsukuda, N., Kobayashi, K. L. I. & Ishii, M. 1986. Photocurrent spectroscopy in GaAs/AlGaAs multiple quantum wells under a high electric field perpendicular to the heterointerface. App. Phys. Lett. 48: 840-842.
|