Sains Malaysiana 32: 147-155 (2003) Sains Hayat/
Life Science
Ketoksikan Logam Zink dan Kadmium
terhadap Anabaena flos-aquae
(Toxicity of zinc and cadmium on Anabaena flos-aquae)
Khairiah Jusoh, Carol Hoh Mui Ling & Nik Mazidah Nik Ahmad
Pusat Pengajian Sains Ssekitaran dan Sumber Alam
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Nik Marzuki Sidik
Pusat Pengajian BioSains dan Bioteknologi
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Lee Yook Heng
Pusat Pengajian Sains Kimia dan Teknologi Makanan
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
ABSTRAK
Kajian pengambilan logam zink (Zn) dan kadmium (Cd) oleh alga biru-hijau Anabena flos-aquae dan ketoksikan logam-logam ini telah dilakukan secara pengkulturan statik berasingan. A. flos-aquae didedahkan kepada kepekatan Zn dan Cd yang berbeza-beza. Kadar pertumbuhan A. flos-aquae ditentukan dengan kaedah spektrofotometri dan paras ketoksikan LD50 96 jam ditentukan melalui analisis Probit. Hasil kajian menunjukkan bahawa pengambilan kedua-dua logam ini oleh A flos-aquae mengikut corak yang serupa, iaitu apabila kepekatan logam meningkat, kuantiti logam diserap berkurangan. Walau bagaimanapun, pengambilan Zn oleh A. flos-aquae ialah tiga kali lebih tinggi berbanding Cd pada paras pendedahan 1.00 mg/L logam. lni menunjukkan Zn adalah lebih diperlukan oleh A. flos-aquae berbanding Cd. Pengambilan Cd yang rendah juga disebabkan oleh ketoksikan Cd yang lebih toksik. LD50 96 jam untuk Cd ialah 0.14 mg/L berbanding dengan LD50 96 jam Zn iaitu, 0.76 mg/L.
ABSTRACT
The uptake of the heavy metals zink (Zn) and cadmium (Cd) by the blue-green algae Anabena flos-aquae and their toxicity were studied using different static cultures. A. flos-aquae was exposed to different concentrations of Zn and Cd. The growth of the algae was monitored by spectrophotometric assay and the level of toxicity, LD50 96 h was measured by using Probit analysis. The study showed that uptake heavy metals by A. flos-aquae followed a similar trend but Zn was absorbed more than Cd. At the level of exposure of 1.00 mg/L for both metals, the absorption of Zn was three times higher than that of Cd. This indicates that Zn is required by A. flos-aquae as compared to Cd The low level of uptake of Cd may be attributed to the higher toxicity level of Cd LD50 96 h for Cd was 0.14 mg/L compared with that of Zn which was 0.76 mg/L.
RUJUKAN/REFERENCE
Aishah, S. 1996. Panduan mengenali alga air tawar. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Brock, T.D., Madigan, M.T., Matrinko, J.M. & Parker J. 1994. Biology of microorganisms, 2nd edition. New Jersey: Prentice Hall.
Cronin, L., Foxon, S.P., Lusby, P.J. & Walton, P.H. 2001. Syntheses and structures of M(L)(X)BPh4 complexes (M=Co(II), Zn(II); L=cis-l,3,5-tris[3-(2-furyl)prop2-enylideneamino]cyclohexane, X=OAc, NO3}: structural models of the active site of carbonic anhydrase. Journal of Biological Inorganic Chemistry 6: 367-377.
Coleman, R.D., Coleman, R.L. & Rice, E.L. 1971. Zinc and cobalt bioconcentrations and toxicity in selected algal species. Botanical Gazettes 132: 102.
Crosby, D.D. 1998. Environmental toxicology and chemistry. New York: Oxford University Press.
De Filippis, L.P., Hampp R. & Zieger, H. 1981. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. II. Respiration, photosynthesis and photochemical activities. Achieves Microbiology 128: 404.
EI-Enany, AE. & Issa, AA 2000. Cyanobacteria as a biosorbent of heavy metal in sewage water. Environmental Toxicology Pharmacology 8 (2): 95-101.
Eyster, H.C. Brown, T.E. & Tanner, H.A. 1958. Mineral requirements for Chlorella pyrenoidosa under autotrophic and heterotrophic conditions. Dlm. Trace Elements, Lamb C.A, Bentley O.G. & Beattie J.M. (eds). New York: Academic Press.
Fogg, G.E., Steward, W.D.P., Fay, P. & Walsby, A.E. 1973. The blue-green algae. London: Academis Press.
Hartmann, M., Clark, T. & Van Eldik, R. 1996. Investigation of the uncatalyzed hydration of CO2 and first approximation to the active site of carbonic anhydrase - a combines Ab initio and DFT study. Journal of Molecular Model 2: 358-361.
Hodgson, E. 1987. Review in environment toxicology. New York: Elsevier Ltd.
Hollibaugh, J.T., Siebert, D.L.R. & Thomas, W.H. 1980. A comparison of the acute toxicities of tne heavy metals to phytoplankton from Saanich Inlet, B.C., Canada. Estuarine Coastal Marine Science 10: 93.
Jensen, A., Rystad, S.P. & Melsom, S. 1974. Heavy metal tolerance of marine phytoplankton. I. The tolerance of three algal species to zinc in coastal sea waters. Journal Experimental Marine Biological Ecology 15: 145.
Jensen, T.E., Rachlin, J.W., Jani, V. & Warkentine, B.E. 1986. Heavy metal uptake inrelation to phosphorus nutrition in Anabaena variabilis. Environmental Pollution Series 42: 261-271.
Keilin, D. & Mann, T. 1944. Activity of purified carbonic anhydrase. Nature 153:107.
Khairiah, J., Jefray, T. & Mushrifah, I. 2000. Chromium toxicity on Anabaenaflosaquae. Malaysian Applied Biology 29 (1&2): 75-77.
Malick, N. & Rai, L.C. 1989. Response of Anabena doliolum to bimatellic combinations of Cu, Ni and Fe with special references to sequential addition. Journal Applied Phycology 1: 301-306.
Matulova, D. 1979. Toxicity of selected heavy metals to algae and bacteria. Water Management 29: 148.
Mushrifah, I. & Peterson, PJ. 1991. Uptake and accumulation of cadmium and tin to the insoluble fraction of Anabaena jlos-aquae. Microbios Letters 46: 189-198.
Prask, J.A. & Plocke, DJ. 1971. The role of zinc in the structural integrity of the cytoplasmic ribosomes of Euglena gracilis. Plant Physiology 48: 150.
Rachlin, J.W. & Farran, M. 1974. Growth response of he green alga Chlorella vulgaris to selective concentrations of zinc. Water Resource 8: 575.
Rachlin, J.W., Warkentine, B. & Jensen T.E. 1983. The response of the marine diatom Nitzschia closterium to selected concentrations of divalent cations Cd, Cu, Pb and Zn. DIm. Trace Substances in Environmental Health XVII, Hemphill D.D. (ed). Columbia: University of Missouri.
Rachlin, J.W., Warkentine, B. & Jensen T.E. 1982. The growth response of Chlorella saccharophila, Navicula incerta and Nitzschia ciosterium to selected concentrations of cadmium. Bulletin Torray Botany Club 109: 129.
Rai, L.E., Tyagi, B., Rai, P.K. & Mallick, N. 1998. Interactive effects of UV-B heavy metals (Cu and Pb) on nitrogen and phosphorus metabolisme of a N2-fixing cyanobacteriaum Anabaena doliolum. Environmental & Experimental Botany 39: 3: 221-231.
Takamura, N., Kasai, F. & Watanabe, M.M. 1989. Effects of Cu, Cd and Zn on photosynthesis of fresh water benthic algae. Journal Applied Phycology 1: 39-52.
Verma, N., Batta, S. & Rehal, R. 1995. Studies on some cyanobacteria for the selection of bioindicators and bioscavangers of chromium metal ions for industrial waste water. International Journal Environmental Study 47(3-4): 211-215.
Vymazal, J. 1995. Algae and element cycling in wetlands. Boca Raton: Lewis Publishers.
|