Sains Malaysiana 38(1): 77-83(2009)

 

Optimization of Fluorescent Silicon Nanomaterial Production

Using Peroxide/Acid/Salt Technique

(Pengoptimuman Penghasilan Nanobahan Silikon Berpendaflour

Menggunakan Teknik Peroksida/Asid/Garam)

 

Laila H. Abuhassan

Department of Physics, Faculty of Science

University of Jordan, Jubeiha, Amman 11942, Jordan

 

Received:    30 January 2008 / Accepted:   13 June 2008

 

 

ABSTRACT

 

Silicon nanomaterial was prepared using the peroxide/acid/salt technique in which an aqueous silicon-based salt solution was added to H2O2/HF etchants. In order to optimize the experimental conditions for silicon nanomaterial production, the amount of nanomaterial produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 mL of an aqueous 1 mg/L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nanomaterial present. The results indicated that using 10 mL of the metasilicate solution produced the highest amount of nanomaterial. Furthermore, the results demonstrated that the peroxide/acid/salt technique results in the enhancement of the production yield of silicon nanomaterial at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nanomaterial is proposed. The auxiliary nanomaterial is deposited into the porous network causing an increase in the amount of nanomaterial produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected.     

 

Keywords: infrared;  peroxide/acid/salt; silicon nanomaterial; silicate

 

 

ABSTRAK

 

Nanobahan Si telah disediakan daripada teknik campuran peroksida/asid/garam yang melibatkan penambahan larutan akueus berasaskan silika kepada pemunar H2O2/HF. Untuk mengoptimumkan keadaan eksperimen penghasilan nanobahan Si, kuantiti nanobahan yang dihasilkan dikaji sebagai fungsi isipadu larutan garam Si yang digunakan dalam sintesis yang dilakukan. Beberapa set sampel disediakan dengan menggunakan 0, 5, 10, 15, dan 20 mL larutan akueus 1 mg/L metasilikat. Luas kawasan di bawah puncak sepadan spektra penyerapan inframerah digunakan sebagai penunjuk kuantitatif terhadap amaun penghasilan nanobahan Si. Keputusan yang diperolehi menunjukkan penggunaan 10 mL larutan metasilikat menghasilkan amaun nanobahan yang tertinggi. Diperhatikan juga teknik campuran peroksida/asid/garam yang digunakan dapat meningkatkan perolehan hasil nanobahan Si pada keperluan kuasa yang rendah selain dapat menghasilkan nisbah bahan terhadap liang yang lebih tinggi. Satu model yang mana garam Si membentuk sumber sekunder Si disarankan di dalam artikel ini. Penggunaan nanobahan tambahan yang diendapkan ke atas jaringan poros menyebabkan peningkatan amaun nanobahan yang dihasilkan yang sekaligus mengurangkan pembentukan liang. Oleh itu, pengurangan rintangan lapisan poros dan seterusnya pengurangan permintaan kuasa adalah dijangkakan.

 

Kata kunci: infra-merah; nanobahan Si; peroksida/asid/garam; silikat

                                               

 

RUJUKAN/REFERENCES

 

Abuhassan, L.H. & Nayfeh, M. 2007. Material analysis of fluorescent Si nanomaterial prepared from silicate water glass solutions. Dirasat 34: 183-191.

Abuhassan, L.H. & Nayfeh, M. 2005. Electrodeposition of fluorescent Si nanomaterial from acidic sodium silicate solutions. Mat. Res. Soc. Symp. Proc. 862: A8.10.1-A8.10.5.

Baldwin, R.K. Pettigrew, K.A. Garno, J.C. Power, P.P. Liu, G-y. & Kauzlarich, S.M. 2001. Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124: 1150-1151.

Belomoin, G. Therrien. J. Smith, A. Rao. S., Twesten, R., Chaieb, S. Nayfeh, M.H. Wagner, L. & Mitas, L. 2002. Observation of a magic discrete family of ultrabright Si nanoparticles. Appl. Phys. Lett. 80: 841-843.

Bessais, B. Ben Younes, O. Ezzaouia, H. Mliki, N. Boujmil, M.F. Oueslati, M. &   Bennaceur, R. 2000. Morphological changes in porous silicon nanostructures: non-conventional photoluminescence shifts and correlation with optical absorption. J. Lumin. 90: 101-109.

Cullis, A.G. Canham, L.T. & Calcott, P.D.J. 1997. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82: 909-965.

Dian, J. Macek, A. Niznansky, D. Nemec, I. Vrkoslav, V. Chvojka, T. & Jelinek, I. 2004. SEM and HRTEM study of porous silicon-relationship between fabrication, morphology and optical properties. Appl. Sur. Sci. 238: 169-174.

Di Nunzio, P.E. & Martelli, S. 2006. Coagulation and aggregation model of silicon nanoparticles from laser pyrolysis. Aerosol Science & Technology 40: 724-734.

Eckhoff, D.A. Sutin, J.D.B. Clegg, R.M. Gratton, E. Rogozhina, E.V. & Braun, P.V. 2005. Optical characterization of ultrasmall Si nanoparticles prepared through         electrochemical dispersion of bulk silicon. J. Phys. Chem. B. 109: 19786-19797.

Heath, J.R. 1992. A liquid-solution-phase synthesis of crystalline silicon. Science 258: 1131-1133.

Herino, R. Bomchil, G. Barla, K. Bertrand, C. & Ginoux, J.L. 1987. Porosity and pore size distributions of porous silicon layers. J. Electrochem. Soc. 134: 1994-2000.

Holmes, J.D. Ziegler, K.J. Doty, R.C. Pell, L.E. Johnston, K.P. & Korget, B.A. 2001. Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123: 3743-3748.

Kobyashi, M. Liu, S-M. Sato, S. Yao, H. & Kimura, K. 2006. Optical evaluation of silicon nanoparticles prepared by arc discharge method in liquid nitrogen. Jap. J.         Appl. Phys. 45: 6146-6152.

Kumar, P. & Huber, P. 2007. Effect of etching parameter on pore size and porosity of electrochemically formed nanoporous silicon. J. Nanomat. Article ID 89718 (4pp).

Mitas, L. Therrien, J. Twesten, R. Belomoin, G. & Nayfeh, M.H. 2001. Effect of surface reconstruction on the structural prototypes of ultrasmall ultrabright Si29 nanoparticles. Appl. Phys. Lett. 78: 1918-1920.

Nayfeh, M.H. Rogozhina, E.V. & Mitas, L. 2003. Synthesis, Functionalization and Surface Treatment of Nanoparticles. Edited by Marie-Isabelle Baraton. USA American Scientific Publishers: 173-231.

Nielsen, D. Abuhassan, L.H. Alchihabi, M., Al-Muhanna, A. Host, J. & Nayfeh, M.H. 2007. Current-less anodization of intrinsic silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 101: 114302/1-11403/3.

Saunders, W.A. Sercel, P.C. Lee, R.B. Atwater, H.A. Vahala, K.J., Flagan, R.C. & Escorcia-Aparcio, E.J. 1993. Synthesis of luminescent silicon nanoclusters by spark ablation. Appl. Phys. Lett. 63: 1549-1551.

Sweryda-Krawiec, B., Casagneau, T. & Fendler, J.H. 1999. Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103: 9524-9529.

Tinsley-Bown, A.M. Canham, L.T. Hollings, M. Anderson, M.H. Reeves, C.L. Cox, T.I. Nicklin, S. Squirrell, D.J. Perkins, E. Hutchinson, A. & Sailor, M.J. 2000. Phys. Stat. Sol. 182: 547-553.

Timoshenko, V.Yu. Osminkina, L.A. Efimova, A.I. Golovan, L.A. Kashkarov, P.K. Kovalev. D. Kunzner, N. Gross, E. Diener, J. & Koch, F. 2003. Phys. Rev. B. 67: 113405-113408.           

Townsend, P.D. & Killey, J.C. 1973. Colour centres and imperfections in insulators and semiconductors. Chapter 3. Sussex University Press.          

Yamani, Z. Thompson, H. Abuhassan, L.H. & Nayfeh, M.H. 1997. Ideal anodization of   silicon. Appl. Phys. Lett. 70(25): 3404-3406.

Yang, C-S. Bley, R.A. Kauzlarich, S.M. Lee, H.W.H. & Delgado, G.R. 1999. Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121: 5191-5195.

Yoshida, T. Takeyama, S. Yamada, Y. & Mutoh, K. 1996. Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Appl. Phys. Lett. 68: 1772-1774.

Zhang, X. Neiner, D. Wang, S. Louie, A.Y. & Kauzlarich, S.M. 2007. A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization, and water stability. Nanotech. 18: 095601.

Zhu, X.P. Yukawa, T. Kishi, T. Hirai, M. Suematsu, H. Jiang, W. & Yatsui. 2005. Synthesis of light-emitting silicon nanoparticles by intense pulsed ion-beam evaporation. J. Nanoparticle Res. 7: 669-673.

Zhu, Y. Wang, H. & Ong, P.P. 2000. Strong and stable photoluminescencefrom sputtered silicon nanoparticles. J. Phys. D: Appl. Phys. 33: 1965-1968.

 

 

previous