Sains Malaysiana
39(6)(2010): 1015–1023
Reka Bentuk dan
Pembangunan Mikro Sel Fuel Metanol Langsung (μSFML) untuk Aplikasi Mudah Alih
(Design and Development of Micro Direct Methanol Fuel Cell (μDMFC) for Portable Application)
N. Hashim, S.K.
Kamarudin* & W.R.W. Daud
Institut Sel Fuel,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 28 April
2009 / Accepted: 16 May 2010
ABSTRAK
Sel
tunggal dan berbilang sel metanol langsung berskala mikro dengan luas permukaan
1.0 cm2 beroperasi secara
pasif telah dibangunkan dan diuji. Gas oksigen telah diambil dari persekitaran
dan larutan metanol disimpan pada ruang tersedia pada bahagian anod. Prestasi
sel tunggal diuji dengan menggunakan beberapa kepekatan metanol antara 1.0 M
hingga 5.0 M dan keputusan menunjukkan kepekatan 4.0 M memberikan prestasi yang
optimum pada operasi sel. Stek yang mengandungi 6 sel difabrikasi dan diuji
dengan menggunakan kepekatan metanol optimum iaitu 4.0 M dan tenaga yang
terhasil dengan muatan mangkin yang berbeza pada anod dibandingkan. Kombinasi
muatan mangkin 3.0 mg cm-2 Pt/Ru
pada anod dan 2.0 mg cm-2 Pt
pada katod memberikan nilai tenaga yang paling tinggi antara kombinasi lain
iaitu 12.05 mW pada 1.08 V dan 11.2 mA.
Kata
kunci: Muatan mangkin; sel fuel mikro; reka bentuk; SFML
ABSTRACT
A
passive, air-breathing single cell and a multi-cell stack micro direct methanol
fuel cell with 1.0 cm2 active area were designed, fabricated and tested. The fuel cell
was completely passive without any ancillary device such as pump. Oxygen was
taken from the surrounding air, and the methanol solution was stored in a
built-in reservoir. The performance of the single cell was tested with
different methanol concentrations ranging from 1.0 M to 5.0 M, and the optimum
performance was achieved by using methanol at a concentration of 4.0 M. A stack
with 6 cells was fabricated and tested with the optimum methanol concentration
of 4.0 M, and power levels produced by different catalyst loadings on the anode
were compared. The combination of a catalyst loading of 3.0 mg cm-2 Pt/Ru
on the anode and 2.0 mg cm-2 Pt on the cathode yielded the highest power of 12.05 mW at 1.08
V and 11.2 mA.
Keywords:
Catalyst loading; micro fuel cell; design; DMFC
REFERENCES
Baglio, V., Stassi,
A., Matera, F.V., Antonucci, V. & Aric`o, A.S. 2009. Investigation of
passive DMFC mini-stacks at ambient temperature. Electrochimica Acta 54:
2004-2009.
Bostic, E., Sifer, N.,
Bolton, C., Ritter, U. & Dubois, T. 2004. The US army foreign comparative
test fuel cell program. Journal of Power Sources 137: 76-79.
Cao, J., Zou, Z., Huang,
Q., Yuana, T., Lia, Z., Xia, B. & Yang, H. 2008. Planar air-breathing
micro-direct methanol fuel cell stacks based on micro-electronic–mechanical-system
technology. Journal of Power Sources 185: 433-438.
Chen, C-Y., Lai, W-H.,
Weng, B-J., Chuang, H-J., Hsieh, C-Y. & Kung, C-C. 2008. Planar array stack
design aided by rapid prototyping in development of air-breathing PEMFC. Journal
of Power Sources 179: 147-154.
Chen, F., Chang, M-H.
& Lin, H-Y. 2008. Analysis of a novel MEMS-based design of micro-direct
methanol fuel cell. Journal of Power Sources 178: 125-131.
Dillon, R., Srinivasan,
S., Aric˜, A.S. & Antonucci, V. 2004. International activities in DMFC
R&D: status of technologies and potential applications. Journal of Power
Sources 127: 112-126.
Faghri, A. & Guo, Z.
2008. An innovative passive DMFC technology. Journal of Power Sources 28:
1614-1622.
Ge, J. & Liu, H. 2007.
A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel
cell. Journal of Power Sources 163: 907-915.
Guo, Z. & Faghri, A.
2007. Development of a 1W passive DMFC. International Communication in Heat
and Mass Transfer.
Ito, T., Kimura, K. &
Kunimatsu, M. 2006. Characteristics of micro DMFC array fabricated on flexible
polymeric substrate. Electrochemistry Communication 8: 973-976.
Jeng, K-T., Huang &
W-M., Hsu, N-Y. 2009. Application of low-voltage electrophoretic deposition to
fabrication of direct methanol fuel cell electrode composite catalyst layer. Materials
Chemistry and Physics 113: 574-578.
Jewett, G., Fagri, A.
& Xiao, B. 2009. Optimization of water and air management system for
passive direct methanol fuel cell. International Journal of Heat and Mass
Transfer 52: 3564-3575.
Kim, D., Cho, E.A., Hong,
S-A., Oh, I-H. & Ha, H.Y. 2004. Recent progress in passive direct methanol
fuel cells at KIST. Journal of Power Sources 130: 172-177.
Kim, T. & Kwon, S.
2009. MEMS fuel cell system intregrated with a methanol reformer for a portable
power sources. Sensors and Actuators A 15(2): 204-211.
Kulikovsky, A.A. 2003. A
method for analysis of DMFC performance curves. Electrochemistry
Communications 5: 1030-1036.
Kuriyama, K., Kubota, T.,
Okamura, D., Suzuki, T. & Sasahara, J. 2008. Design and fabrication of
MEMS-based monolithic fuel cells. Sensors and Actuators A 145-146:
354-362.
Liu, J.G. 2006. Effect of
membrane thickness on the performance and efficiency of passive direct methanol
fuel cells. Journal of Power Sources 153: 61-67.
Lua, G.Q., Wang, C.Y.,
Yen, T.J. & Zhang, X. 2004. Development and characterization of a
silicon-based micro direct methanol fuel cell. Electrochimica Acta 49:
821-828.
Ma, Z.Q., Cheng, P. &
Zhao, T.S. 2003. A palladium-alloy deposited Nafion membrane for direct
methanol fuel cells. Journal of Membrane Science 215: 327-336.
Martin, J.J., Qian, W.,
Wang, H., Neburchilov, V., Zhang, J., Wilkinson, D.P. & Chang, Z. 2007.
Design and testing of a passive planar three-cell DMFC. Journal of Power
Sources 164: 287-292.
Nakagawa, N. 2009.
Reaction analysis of a direct methanol fuel cell employing a porous carbon
plate operated at high methanol concentration. Journal of Power Sources 186:
45-51.
Prabhuram, J., Zhao, T.S.,
Wong, C.W. & Guo, J.W. 2004. Synthesis and physical/electrochemical
characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. Journal
of Power Sources 134: 1-6.
Rawool, A.S., Sushanta,
K.M. & Pharoah, J.G. 2006. An investigation of convective transport in
Micro Proton-Exchange Membrane Fuel Cells. Journal of Power Sources 162:
985-991.
Schultza, T. &
Sundmacher, K. 2005. Rigorous dynamic model of direct methanol fuel cell based on
Maxwell-Stefan mass transport equations and a Flory-Huggins activity model:
Formulation and experimental validation. Journal of Power Sources 145:
435-462.
Seong, J.Y., Bae, Y.C.
& Sun, Y.K. 2005. Thermodynamic properties of direct methanol polymer electrolyte
fuel cell, Journal of Power Sources 145: 598-603.
Yang, W.M., Chou, S.K.
& Shu, C. 2007. Effect of current-collector structure on performance of
passive micro direct methanol fuel cell. Journal of Power Sources 164:
549-554
Yang, W.W. & Zhao,
T.S. 2007. A two-dimensional, two-phase mass transport model for liquid-feed
DMFCs. Electro. Acta 52: 6125-6140.
Ye, Q. & Zhao, T.S.
2005. A natural-circulation fuel delivery system for direct methanol fuel
cells. Journal of Power Sources 147: 196-202.
Ye, Q. & Zhao, T.S.
2005. Electrolytic hydrogen evolution in DMFCs induced by oxygen interruptions
and its effect on cell performance. Electrochemical and Solid State Letters,
8: A211-A214.
Zhang, J.,Yin, G-P., Lai,
Q-Z., Wang, Z-B., Cai, K-D. & Liu, P. 2007. The influence of anode gas
diffusion layer on the performance of low temperature DMFC. Journal of Power
Sources 168: 453-458.
Zhang, Y., Lu, J.,
Shimano, S., Zhou, H. & Maeda, R. 2007. Development of MEMS-based direct
methanol fuel cell with high power density using nanoimprint technology. Electrochemistry
Communications 9: 1365-1368.
Zhong, L., Wang, X.,
Jiang, Y., Zhang, Q., Qiu, X., Zhau, Y. & Liu, L. 2008. A micro-direct
methanol fuel cell stack with optimized design and micro fabrication. Sensors
and Actuators A: Physical 143: 70-76.
*Corresponding author:
ctie@vlsi.eng.ukm.my
|