Sains Malaysiana
39(6)(2010): 999–1006
Effect of Copper
Addition on Grain Refinement of Austenite in Fe-8wt.%Ni-(0-3)wt.%Cu Alloy
(Kesan Penambahan Kuprum terhadap Pengecilan Butiran Austenit di dalam Aloi Fe-8%bt.Ni-(0-3)%bt.Cu)
Junaidi Syarif* & Zainuddin Sajuri
Department of
Mechanical and Materials Engineering
Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
Received: 16
September 2009 / Accepted: 10 March 2010
ABSTRACT
The
effect of copper addition on martensitic structure and reversion from
martensite to austenite behaviours upon heating were investigated to clarify
mechanism of grain refinement of austenite in Fe-8wt.%Ni-Cu alloys. Upon
water-quenching, the alloys underwent a martensitic transformation that
exhibited a typical lath-martensitic structure. It was found that
prior-austenite grain and martensite-packet sizes were refined with increasing
copper content. The grain refinement was not due to a decrease of grain growth rate
of the austenite. However, it was found that nucleation rate of the austenite
on reversion was increased by the copper addition. In Fe-8wt.%Ni alloy heated
in (austenite+ferrite) region, reversed austenite grains were formed at high
angle boundaries such as prior austenite grain boundary and packet boundary. On
the other hand, TEM observation of the Fe-8wt.%Ni-3wt.%Cu alloy revealed that fine
copper particles precipitated within the martensitic structure and the reversed
austenite grains also formed within lath-structures and lath boundary. It means
that the copper addition promoted formation of the reversed austenite within
martensitic matrix and resulted in the grain refinement of the prior-austenite
in Fe-8wt.%Ni-Cu alloy.
Keyword:
Austenite grain; copper addition; grain refinement; refinement martensitic
steel; martensitic-austenitic reversion
ABSTRAK
Kesan
penambahan kuprum terhadap struktur martensit dan pemendakan butiran kuprum
serta kelakuan kebalikan daripada martensit kepada austenit pada pemanasan
telah dikaji untuk mengenalpasti mekanisme pengecilan butiran austenit di dalam
aloi Fe-8%bt.Ni-Cu. Selepas proses lindap kejut air dilakukan, berlaku
penjelmaan martensit pada aloi berkenaan yang dibuktikan melalui kewujudan
struktur lazim martensit berbilah. Butiran austenit-terdahulu dan saiz
martensit-paket menjadi kecil dengan penambahan kandungan kuprum. Pengecilan
butiran bukan disebabkan oleh penurunan kadar pertumbuhan butiran austenit.
Sebaliknya, kadar penukleusan austenit daripada proses kebalikan meningkat
dengan penambahan kuprum. Untuk aloi Fe8%bt.Ni yang dipanaskan di dalam kawasan
fasa-duaan (austenit+ferit), butiran austenit berbalik terhasil pada sempadan
sudut tinggi seperti sempadan butiran austenit-terdahulu dan sempadan paket. Daripada
sudut yang lain, pencerapan TEM terhadap aloi Fe-8%bt.Ni-3%bt. Cu memperlihatkan butiran halus
kuprum termendak di dalam struktur martensit dan butiran austenit berbalik juga
terhasil di dalam dan di antara sempadan bilah martensit. Penambahan kuprum
memberi kesan kepada pembentukan austenit berbalik di dalam matriks martensit,
dan menyebabkan pengecilan butiran austenit-terdahulu pada aloi Fe-8%bt.Ni-Cu.
Kata
kunci: Butiran austenit; kebalikan martensit-austenit; keluli martensit;
penambahan kuprum; pengecilan butiran
REFERENCES
Burke, J.E. &
Turnbull, D. 1952. Recrystallization and Grain Growth. Prog. in Met. Phys.
3: 220-244.
Deschamps, A., Militzer M.
& Poole, W.J. 2001. Precipitation kinetics and strengthening of a
Fe-0.8wt%Cu alloy, ISIJ International 41: 196-205.
Futamura, Y., Tsuchiyama,
T. & Takaki, S. 1999. Effect of Cu addition on phase transformation and
microstructure in 9 mass% Cr martensitic steels. Tetsu- to-HaganŽ 85:
697-702.
Honeycombe, R.W.K & Bhadeshia,
H.K.D.H. 1995. Steels: Microstructure and Properties. London: Edward
Arnold.
Hornbogen, E. & Glenn,
R.C. 1960. A metallographic study of precipitation of copper from alpha iron. Trans.
AIME. 218: 1064-1070.
Kim, H.J., Kim, Y.H. & Morris Jr, J.W. 1998. Thermal mechanisms
of grain and packet refinement in a lath martensitic steel. ISIJ
International 38: 1277-1285.
Kimura, Y. & Takaki,
S. 1997. Phase transformation mechanism of Fe-Cu alloys, ISIJ International 37:
290-295.
Krauss, G. 1990. Steel
Heat Treatment and Processing Principles, Materials Park (OH): ASM
International.
Krauss, G., 1999.
Martensite in steel: Strength and structure, Materials Sci. & Eng.
A273-275: 41-57.
Morito, S., Tanaka, H.,
Konishi, R., Furuhara, T. & Maki T. 2003. The morphology and
crystallography of lath martensite in Fe-C alloys, Acta Materialia 51:
1789-1799.
Moser, A. & Legat, A.
1969. Calculation of hardenability from composition. Haerterei-Technische
Mitteilungen 24: 100-105.
Nakashima, K., Futamura, Y., Tsuchiyama, T. &
Takaki, S. 2002. Interaction between dislocation and copper particles in Fe-Cu
alloys. ISIJ International 42: 1541-1545.
Salter, W.J.M. 1966. Effects of
alloying elements on solubility and surface energy of copper in mild steel. J.Iron
and Steel Inst. 204: 478-488.
Syarif, J., Hoshino, T.,
Tsuchiyama, T. & Takaki, S. 2000. Effect of solute copper on hardness and
ductile-to-brittle transition in α-iron. Tetsu- to-HaganŽ 86:
558-562.
Takaki, S., Fukunaga, K.,
Syarif, J. & Tsuchiyama, T. 2004. Effect of grain refinement on thermal
stability of metastable austenitic steel. Materials Trans. 45:
2245-2251.
Tsuchiyama, T. &
Takaki, S. 1998. Formation of reversed austenite from M23C6 type High Chromium
Martensitic Steel, Proceeding of the Third Pacific Rim International
Conference on Advanced Materials and Processing (PRICM3). 1: 1187-1192.
Vander Voort, G.F. 2007. Metallography,
Principles and Practice. Ohio: ASM International.
*Corresponding author;
email: syarif@eng.ukm.my
|