Sains Malaysiana
40(7)(2011): 695–700
Comparative
Studies on Plasticized and Unplasticized Polyacrylonitrile (PAN) Polymer
Electrolytes Containing Lithium and Sodium Salts
(Kajian
Perbandingan ke atas Elektrolit Polimer Berasaskan Poliakrilonitril (PAN)
dengan Agen Pemplastik dan Tanpa Agen Pemplastik yang Mengandungi Garam Litium
dan Garam Natrium)
K. B. Md. Isa, L. Othman
& Z. Osman*
Physics
Department, University of Malaya, 50603 Kuala Lumpur, Malaysia
Received:
23 October 2009 / Accepted: 20 September 2010
ABSTRACT
Polymer
electrolytes based on polyacrylonitrile (PAN) containing inorganic
salts; lithium triflate (LiCF3SO3)
and sodium triflate (NaCF3SO3)
and ethylene carbonate (EC) as plasticizer were prepared using
solvent casting technique. In this study, five systems of plasticized and
unplasticized polymer electrolyte films i.e. PAN-EC, PAN-, PAN- PAN-EC-
and PAN-EC- systems have been prepared. The
structural and morphological properties of the films were studied using
infrared spectroscopy and scanning electron microscopy (SEM)
while the conductivity study was done by using impedance spectroscopy. The
infrared results revealed that interaction had taken place between the nitrogen
atoms of PAN and Li+ and Na+ ions
from the salts. SEM micrographs showed that the
plasticized film, PAN-EC-
has bigger pores than PAN-EC-3 film
resulting in the film containing salt being more conductive. On addition of
salts and plasticizer, the conductivity of pure PAN increases
to three orders of magnitude. The plasticized film containing salt has a higher
conductivity compared to that containing salt. This result showed that the
interaction between Li+-ion and the nitrogen atom of PAN was
stronger than that of Na+-ion. The conductivity-temperature
dependence of the highest conducting film from each system follows Arrhenius
equation in the temperature range of 303 to 353 K. The conductivity-pressure
study in the range of 0.01 - 0.09 MPa showed that the conductivity decreased
when pressure was increased. This can be explained in term of free volume
model.
Keywords:
Conductivity; lithium triflate; plasticizer; polyacrylonitrile; sodium triflate
ABSTRAK
Elektrolit
polimer berasaskan poliakrilonitril (PAN) yang mengandungi garam tak
organik; litium triflat (LiCF3SO3)
dan natrium triflat (NaCF3SO3),
etilena karbonat (EC) sebagai agen pemplastik telah
disediakan dengan kaedah tuangan larutan. Dalam kajian ini, lima sistem
elektrolit polimer filem yang mengandungi agen pemplastik dan tidak mengandungi
agen pemplastik iaitu PAN-EC, PAN-, PAN- PAN-EC-dan PAN-EC-
telah disediakan. Sifat-sifat struktur dan morfologi filem telah dikaji dengan
menggunakan spektroskopi inframerah dan mikroskop elektron imbasan (SEM)
manakala kekonduksian dikaji dengan menggunakan spektroskopi impedans.
Keputusan spektroskopi inframerah menunjukkan berlakunya interaksi di antara
atom nitrogen daripada PAN dengan ion Li+ dan
ion Na+ daripada garam. Mikrograf SEM menunjukkan
bagi filem yang mengandungi agen pemplastik, filem PAN-EC-
mempunyai liang yang lebih besar daripada filem PAN-EC-
menyebabkan filem yang mengandungi lebih konduktif. Dengan penambahan garam dan
agen pemplastik, kekonduksian bagi filem PAN tulen meningkat sebanyak
tiga turutan magnitud. Filem yang mengandungi agen pemplastik dengan garam NaCF3SO3 mempunyai
nilai kekonduksian lebih tinggi daripada yang mengandungi garam . Ini
menunjukkan interaksi di antara ion Li+ dengan atom nitrogen daripada PAN adalah lebih kuat daripada ion Na+.
Kajian kebergantungan kekonduksian terhadap suhu bagi filem yang mempunyai
kekonduksian tertinggi daripada semua sistem menunjukkan ia mematuhi persamaan
Arrhenius dalam julat suhu daripada 303 K hingga 353 K. Kajian kebergantungan
kekonduksian terhadap tekanan dalam julat 0.01 - 0.09 MPa menunjukkan
kekonduksian menurun dengan tekanan. Keputusan ini boleh diterangkan dengan
model isipadu bebas.
Kata kunci: Agen pempalstik; kekonduksian; litium triflat; natrium
triflat; poliakrilonitril
REFERENCES
Armand M.B., Chabango, J.M. & Duclot, M.J. 1979. In. Vashishta
P., Mundy J.N. & Shenoy G.K. (ed.) Fast Ion Transport in Solids, 131-136.
North-Holland, Amsterdam.
Bendler, J.T., Fontanella, J.J., Shlesinger, M.F., Wintersgill,
M.C. 2003. The need to reconsider Traditional Free Volume Theory for Polymer
Electrolytes. Electrochimica Acta 48: 2267-2272.
Bhide, A. & Hariharan, K. 2007. Ionic Transport Studies on
(PEO)6: NaPO3 Polymer Electrolyte
Plasticized with PEG400. European Polymer Journal 43:
4253-4270.
Duclot, M., Alloin, F., Brylev, O., Sanchez, J.Y. & Souquet,
J.L. 2000. New Alkali Ionomers: Transport Mechanism from Temperature and
Pressure Conductivity Measurements. Solid State Ionics 136-137:
1153-1160.
Egashira, M., Todo, H.,Yoshimoto. N. & Morita, M. 2008.
Lithium Ion Conduction in Ionic Liquid-Based Gel Polymer Electrolyte. Journal
of Power Sources 178: 729-735.
Fenton, B.E., Parker, J.M. & Wright, P.W. 1973. Complexes of
Alkali Metal Ions with Poly (ethylene oxide). Polymer 14: 589
Fontanella, J.J., Wintersgill, M.C., Smith, M.K., Semancik, J.
& Andeen, C.G. 1986. Effect of High Pressure on Electrical Relaxation in
Poly (Propylene Oxide) and Electrical Conductivity in Poly (Propylene Oxide)
Complexed with Lithium Salts. Journal of Applied Physics. 60: 2665-2671.
Kuila, T., Acharya, H., Srivastava, S.K., Samantaray B.K. &
Kureti, S. 2007. Enhancing the Ionic Conductivity of PEO Based Plasticized
Composite Polymer Electrolyte by LaMnO3 nanofiller, Material
Science Engineering B 131: 217-224.
Lee, Y.M., Ko, D.H.. Lee, J.Y. & Park, J.K. 2006. Highly
Ion-Conductive Solid Polymer Electrolytes Based on Polyethylene Non-Woven
Matrix. Electrochimica Acta 52: 1582-1587.
Le Nest, J.F. & Gandini, A. 1990. In. Scrosati, B (ed.). Second
International Symposium on Polymer Electrolytes. pp. 129. London: New York. Elsevier Appl. Sci.
Pradhan,
D.K., Samantaray, K., Choudhary, N.P. & Thakur, A.K. 2005. Effect of
Plasticizer on Structure-Property Relationship in Composite Polymer
Electrolytes. Journal of Power Sources 13: 384-39.
Ramya,
C.S., Selvasekarapandian, S., Savitha, T., Hirankumar, G. & Angelo, P.C.
2007. Vibrational and Impedance Study on PVP–NH4SCN
Based Polymer Electrolytes. Physica B 393: 11-17.
Sagane,
F., Iriyama, Y., Abe, T. & Ogumi, Z. 2005. Li+ and
Na+ Transfer Through Interfaces between Inorganic Solid
Electrolytes and Polymer or liquid Electrolytes. Journal of Power Sources 146(1-2):
749-752.
Stallworth,
P.E., Fontanella, J.J., Wintersgill, M.C., Scheidler, C.D., Immel, J.,
Greenbaum, S.G. & Gozdz, A.S. 1999. NMR, DSC and High Pressure Electrical
Conductivity Studies of Liquid and Hybrid Electrolytes. Journal of Power
Sources 81-82: 739-747.
*Corresponding
author; email: zurinaosman@um.edu.my
|