Sains Malaysiana 40(7)(2011): 737–742
Loading
Effect of Aluminum Hydroxide onto the Mechanical, Thermal Conductivity,
Acoustical and Burning Properties of the Palm-based Polyurethane Composites
(Kesan
Penambahan Aluminum Hidroksida ke atas Sifat Mekanik, Kekonduksian Terma,
Akustik dan Kebakaran Komposit Poliuretana Sawit)
Nor
Rabbi’atul ‘Adawiyah Norzali & Khairiah Haji Badri*
School
of Chemical Science and Food Technology, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
Khairiah
Haji Badri*
Polymer
Research Centre, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
Mohd
Zaki Nuawi
Department
of Mechanical and Materials Engineering
Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor D.E., Malaysia
Received:
23 October 2009 / Accepted: 28 October 2010
ABSTRACT
Effects
of aluminium hydroxide (ATH) addition on the properties of
palm-based polyurethane composites were investigated. The hybrid composites
were prepared by mixing 10 wt% of oil palm empty fruit bunch fiber (EFB)
with ATH at varying amount of 2, 4 and 6 wt% of the overall
mass of the resin. The compression stress and modulus gave the highest values
of 575 and 2301 kPa, respectively at 2 wt% loading of ATH.
The compression stress and modulus decreased drastically at 4 wt% (431 kPa and
1659 kPa, respectively) and further decreased at 6 wt% ATH (339
and 1468 kPa, respectively). However, the burning rate is inversely
proportional to the loading percentage where the highest burning rate was
observed at 2 wt% ATH. Sound absorption analysis
indicated a large absorption coefficient at high frequency (4000 Hz) for all
samples. The highest absorption coefficient was obtained from PU-EFB/ATH with
4 wt% ATH.
Keywords:
Acoustic property; aluminum hydroxide; burning property; mechanical property;
polyurethane composites
ABSTRAK
Kesan
penambahan aluminium hidroksida (ATH) terhadap sifat komposit
hibrid poliuretana (PU) berasaskan sawit telah dikaji. Komposit hibrid PU disediakan dengan menambahkan 10%
mengikut berat serabut tandan kosong kelapa sawit (EFB)
diikuti dengan penambahan ATH pada peratus penambahan
divariasikan pada 2, 4 dan 6% mengikut berat keseluruhan resin. Tegasan dan
modulus mampatan adalah pada nilai tertinggi pada penambahan 2% ATH iaitu
masing-masing 338 kPa dan 2209 kPa. Pada 4% ATH,
tegasan dan modulus mampatan menurun kepada masing-masing 431 dan 1659 kPa dan
semakin menurun dengan penambahan 6% ATH kepada masing-masing 379
dan 1468 kPa. Walau bagaimanapun, kadar kebakaran
adalah berkadar songsang dengan peratus pengisian dengan kadar pembakaran
tertinggi berlaku pada 2%bt ATH. Analisis
serapan bunyi menunjukkan pekali serapan yang tinggi pada frekuensi tinggi
(4000 Hz) untuk semua sampel dengan PU-EFB/ATH (4% ATH)
menunjukkan pekali serapan tertinggi.
Kata kunci: Aluminum
hidroksida; komposit poliuretana; sifat akustik; sifat kebolehbakaran; sifat
mekanik
REFERENCES
Ahmad Ramazani, S.A., Rahimi, A., Frounchi, M.
& Radman, S. 2008. Investigation of flame
retardancy and physical-mechanical properties of zinc borate and aluminum
hydroxide propylene composites. Materials and Design 29(5):
1051-1056.
Almeida Pinto, U., Visconte, L.L.Y., Gallo, J.
& Nunes, R.C.R. 2000. Flame retardancy in
Thermoplastic Polyurethane elastomers (TPU) with Mica and Aluminum Trihydrate
(ATH). Polymer Degradation and Stability 69(3): 257-260.
Aranguren, M.I., Racz, I. & Marcovich, N.E.
2007. Microfoams based on castor oil polyurethanes and vegetable
fibres. Journal of Applied Polymer Science 105: 2791-2800.
Badri, K.H., Ahmad, S.H. & Zakaria, S. 2000. Development of
zero ODP rigid polyurethane foam from RBD palm kernel oil. Journal of
Materials Science Letters 19(15): 1355- 1356.
Badri, K.H., Ahmad, S.H. & Zakaria, S. 2001. The production of
a high-functionality RBD palm kernel-based polyester polyol. Journal of
Applied Polymer Science 82: 827-832.
Badri, K.H., Othman, Z. & Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm resources. Journal of Materials
Science 39(16-17): 5541-5542.
Badri, K.H., Othman, Z. & Mohd Razali, I. 2005. Mechanical
properties of polyurethane composites from oil palm resources. Iranian
Polymer Journal 14 (5): 987-993
Benli, S., Yilmazer, Ü., Pekel, F., & Özkar, S. 1998. Effect of fillers on thermal and mechanical properties of
polyurethane elastomer. Journal of Applied Polymer Science 68:
1057-1065.
Bonsignore, P. V. 1981. Alumina trihydarate as a flame retardant
for polyurethane foams. In Frisch, K.C. and Klempner, D. (Ed.), In Advances
in Urethane Science and Technology.8: 253-262. United States of America:
Technomic Publishing Co. Inc.
Carme Coll Ferrer, M., Babb, D. & Ryan, A.J.
2008. Characterisation of polyurethane networks based on vegetable
derived polyol. Polymer 49(15): 3279-3287.
Dvir, H., Gottlieb, M., Daren, S. &
Tartakovsky, E. 2003. Optimization of a
flame-retarded polypropylene composite. Composites Science and Technology 63: 1865-1875.
Haq, M., Burgueño, R., Mohanty, A.K. &
Misra, M. 2008. Hybrid bio-based
composites from blends of unsaturated polyester and soybean oil reinforced with
nanoclay and natural fibres. Composites Science and Technology 68(15-16):
3344-3351.
Husic, S., Javni, I. & Petrovic, Z.S. 2005. Thermal and mechanical properties of glass reinforced soy-based polyurethane
composites. Composites Science and Technology 65(1): 19-25.
Javni, I., Petrovic, Z.S., Guo, A. & Fuller, R. 2000. Thermal
stability of polyurethanes based on vegetable oils. Journal of Applied
Polymer Science 77(8): 1723-1734.
Khairul
Anuar Mat Amin & Khairiah Haji Badri. 2007. Palm-based bio-composites
hybridized with kaolinite. Journal of Applied Polymer Science 105:
2488-2496.
Kumluta, D., Tavman, I.H. & Coban, M.T. 2003. Thermal
conductivity of particle filled polyethylene composite materials. Composites
Science and Technology 63: 113-117.
Mansour,
S.H. 2000. Polymeric composites containing alumina trihydrate
and silica. Journal of Elastomers and Plastics 32(3): 248-264.
Modesti, M., Lorenzetti, A., Simioni, F. & Camino, G.
2002. Expandable graphite as an intumescent flame retardant in
polyisocyanurate–polyurethane foams. Polymer Degradation and Stability 77:
195-202.
Nachtigall, S.M.B., Miotto, M., Schneider, E.E., Mauler,
R.S. & Camargo Forte, M.M. 2006. Macromolecular
coupling agents for flame retardant materials. European Polymer
Journal 42: 990-999.
Rozman, H.D., Saad, M.J. & Mohd Ishak, Z.A. 2003. Flexural and
impact properties of oil palm Empty Fruit Bunch (EFB)-Propylene composite-The
effect of maleic anhydride chemical modification of EFB. Polymer Testing 22(3):
335-341.
Tanaka, R., Hirose, S. & Hatakeyama, H. 2008. Preparation
and Characterization of polyurethane foams using a palm oil-based polyol. Bioresource
Technology 99(9): 3810-3816.
Wu, C.-P., Lee, J.-S., & Liao, Y.-J. 2004. Thermal
analysis of aluminium trihydroxide. In Proceedings of the
NATAS Annual Conference on Thermal Analysis and Application, 79-85.
Zhou, H., Li, B. & Huang, G. 2006. Sound
absorption characteristics of polymer microparticles. Journal of Applied
Polymer Science 101: 2675-2679.
*Corresponding
author; email: kaybadri@ukm.my
|