Sains Malaysiana 40(8)(2011): 913–919
Simple Calculation of the Anisotropic Factor for
Minimum Current Path in MgB2 Material Using the Extrapolated Kramer Field as priori Parameter
(Pengiraan Ringkas
Faktor Ketakisotropan Untuk Lintasan Arus Minimum dalam Bahan
MgB2 Menggunakan Medan Kramer Unjuran Sebagai Parameter Priori)
M.I. Adam*
Dept of Physics, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
M.F.M. Aris & S.K. Chen
Dept of Physics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM, Serdang,
Selangor, Malaysia
S.A. Halim
Institute For Mathematical
Research (INSPEM), Universiti Putra Malaysia,
43400 UPM , Serdang, Selangor,
Malaysia
Received: 24 March 2010 /
Accepted: 17 January 2011
ABSTRACT
The volume flux pinning
force density of MgxB2 (x
= 0.8, 1.0 and 1.2) materials was calculated for grains boundary and point
pinning potentials. Stoichiometric Mg0.8, MgB2,
and Mg1.2B2 samples were prepared by the
conventional solid state reaction method. Three pellets were annealed at
temperature range of 650-800°C. Structural analysis revealed large values for FWHM at (hkl) (110)(°) which indicates distortion in the boron plane
of these specimens. The a and c – axis lattice parameters showed respective
contraction and elongation with the increase in processing temperature. The low
crystallinity found in Mg0.8B2 and
Mg1.2B2 specimens was concluded to be due to
structural defects, which act as flux pinning centres. Experimental anisotropic
factor and the minimum fraction for current path, obtained from the framework
of current percolation theory were used to explain the strong field dependence
of the critical current density, Jc in the specimens. The summit
of the maximum pinning force density was shifted to lower magnetic field
position with the increase of anisotropy. The scaling laws were employed in a
Kramer– like field in order to identify the dominant pinning mechanism
correspondence to the summit of maximum pinning. For MgB2 specimens
however, a renormalization field based on the current percolation exposition is
considered for the identification of their dominant pinning since it is very
difficult to account for the flat behaviour of the pinning force in the
weakened current region of these specimens.
Keywords: Anisotropy;
current percolation; grain boundary pinning
ABSTRAK
Ketumpatan daya pengepin
isipadu fluks dalam bahan MgxB2 (x
= 0.8, 1.0, 1.2) dikira untuk keupayaan pengepinan titik dan sempadan butiran.
Bahan berstoikiometri Mg0.8, MgB2,
dan Mg1.2B disediakan melalui kaedah tindak balas keadaan
pepejal. Tiga pelet disepuhlindap dalam julat suhu 650-800°C. Analisis struktur
menzahirkan nilai ‘FWHM’ yang besar pada (hkl) (110)(°)
yang menunjukkan herotan pada satah boron bahan tersebut. Pemalar kekisi
paksi-a dan c menunjukkan pengecutan dan pemanjangan apabila suhu meningkat.
Kerendahan ciri kehabluran dalam bahan Mg0.8B2 and
Mg1.2B2 adalah disebabkan oleh kecacatan
struktur yang bertindak sebagai pusat pengepin fluks. Faktor ketakisotroban uji
kaji dan pecahan minimum yang diperoleh daripada rangka kerja teori perkolasi
laluan arus digunakan untuk menjelaskan kebergantungan yang kuat ketumpatan
arus genting Jc dalam bahan. Ketumpatan daya pengepin maksimum tersesar
ke kedudukan rendah dengan penambahan ketakisotroban. Hukum penskalan digunakan
dalam medan bak-Kramer untuk mengenalpasti mekanisme pengepinan dominan yang
sepadan dengan puncak maksimum pengepinan. Walau bagaimanapun, untuk bahan MgB2 suatu
medan ternormal berdasarkan kedudukan arus perkolasi diambil kira untuk
penentuan pengepinan dominan kerana adalah agak sukar untuk menentukan sifat
daya pengepinan yang mendatar dalam daerah arus yang lemah di dalam bahan.
Kata kunci: Anisotropi; arus perikolasi; pengepinan sempan butiran
REFERENCES
Chen,
D.X. & Goldfarb, R.B., 1989. Kim model for magnetization of type – II
Superconductors. Journal of Applied Physics 66: 2489-2500.
Chen,
S.K., Serquis, A., Serrano, G., Yates, K.A., Blamire, M.G., Guthrie, D.,
Cooper, J., Wang, H., Margadonna, S.M. & MacManus – Driscoll, J.L. 2008.
Structural and superconducting property variations with nominal Mg
non-stoichiometry in MgxB2 and
its enhancement of upper critical field. Advanced Functional Materials 18:
113-20.
Cheng,
C.H., Yang, Y., Munroe, P. & Zhao, Y. 2007. Comparison between Nano–diamond
and carbon nanotube doping effects on critical current density and flux pinning
in MgB2. Superconductor Science &
Technology 20: 296-301.
Eisterer,
M., 2008. Calculation of the volume pinning force in MgB2 superconductors. Physical Review B 77: 144524-1-5.
Eisterer,
M., Robert, S.K., Webber H.W., Sumption, M.D. & Bhatia, M. 2007. Neutron
irradiation of SiC doped magnesium rich MgB2 wires. IEEE Transactions in Applied Superconductivity 17: 2814-17.
Eisterer,
M., Zehetmayer, M. & Weber, H.W., 2003. Current percolation andanisotropy
in polycrystalline MgB2. Physical Review
Letters 90: 247002-1-4.
Kramer,
E.J. 1973. Scaling laws for flux pinning in hard superconductors. Journal of
Applied Physics. 44: 1360 -70.
Kramer,
E.J. 1978. Fundamental fluxoid–defect interactions in irradiate
superconductors. Journal of Nuclear Materials 72: 5-33.
Larbalestier,
D.C., Rikel, M.O., Cooley, L.D., Polyanskii, A.A., Jiang, J.Y., Patniak, S.,
Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B.
& Hellstrom, E.E. 2001. Strongly linked current flow in polycrystalline
forms of the superconductor MgB2. Nature 410:
186-89.
Matsushita,
T., Kiuchi, M., Yamamoto, A., Shimoyama, J. & Kishio, K. 2008. Critical
current density and flux pinning in superconducting MgB2. Physica C 568: 1833-35.
Mikheenko, P., Martinez, E.,
Bevan, A., Abell, J.S. & MacManus – Driscoll, J.L., 2007. Grain boundaries
and pinning in bulk MgB2. Superconductor
Science & Technology 20: S264-70.
Oh,
Sangjun. & Kim, Keeman. 2006. A Consistent description of scaling laws for
flux pinning in Nb3Sn strands based on the Kramer Model. IEEE Transactions
in Applied Superconductivity 16: 1216-19.
Pol,
Vilas Ganpat., Pol, Swati Vilas., Felner, Israel & Gednaken, Aharon. 2006.
Critical current density in the MgB2 nanoparticles prepared under
autogenicpressure at elevated temperature. Chemistry & Physics Letters 433:
115-19.
Qu,
B., Sun, X.D., Li, J.G., Xiu, Z.M., Liu, S.H. & Hue, C.P. 2009. Significant
improvement of critical current density in MgB2 doped with ferromagneticFe3O4
nanoparticles. Superconductor Science & Technology 22: 015-027.
Stauffer,
D. & Aharony, A. 1998. Introduction to Percolation Theory. Taylor
& Francis PA 19106.
Tilley,
D.R. 1965. The Ginsburg – Landau equations for anisotropic alloys. Proceedings
of the Royal Physical Society 86: 289-95.
Yamamoto,
A., Shimomya, J., Kishio, K. & Matsushta, T. 2007. Limiting factors of
normal – state conductivity in superconducting MgB2: an application of mean –
field theory for a site percolation problem. Superconductor Science &
Technology 20: 658-66.
Yamamoto,
A., Shimoyama, J., Ueda, S., Katsura, Y., Iwayama, I., Horii, S. & Kishio,
K. 2006. Crystallinity and flux pinning properties of MgB2 bulks. Physica C 445-448:
806-10.
*Corresponding
author; email: miadam@um.edu.my
|