Sains Malaysiana 41(11)(2012):
1345–1353
Application
of Loglinear Models in Estimating Wet Category in Monthly Rainfall
(Penggunaan Model Loglinear dalam Penganggaran Kategori Basah
Hujan Bulanan)
Wahidah Sanusi*
Department of Mathematics, Faculty of Mathematics and
Natural Science
Universitas Negeri Makassar, 90224, Parangtambung Makassa
Sulawesi Selatan, Indonesia
Kamarulzaman Ibrahim
School of Mathematical Sciences, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor
Received: 28 September 2011 / Accepted: 31 May 2012
ABSTRACT
Climate changes have become serious issues that have been widely
discussed by researchers. One of the issues concerns with the study in changes
of rainfall patterns. Changes in rainfall patterns affect the dryness and
wetness conditions of a region. In this study, the three-dimensional loglinear
model was used to fit the observed frequencies and to model the expected
frequencies of wet class transition on eight rainfall stations in Peninsular
Malaysia. The expected frequency values can be employed to determine the odds
value of wet classes of each station. Further, the odds values were used to estimate
the wet class of the following month if the wet class of the previous month and
current month were identified. The wet classification were based on SPI index (Standardized Precipitation Index). For station that was
analyzed, there was no difference found in the comparison between estimated and
observed wet classes. It was concluded that the loglinear models could be used
to estimate the wetness classes through the estimates of odds values.
Keywords: Loglinear models; odds; Standardized Precipitation Index
(SPI);
wet classification
ABSTRAK
Perubahan iklim merupakan isu yang banyak
diperbincangkan oleh penyelidik. Salah satunya ialah tentang kajian perubahan
corak hujan. Perubahan corak hujan membawa kesan
terhadap keadaan kering ataupun basah sesebuah rantau. Dalam kajian ini
digunakan model loglinear tiga dimensi untuk menyuaikan kekerapan dicerap dan
untuk memodelkan kekerapan dijangka peralihan kelas basah pada lapan stesen
hujan di Semenanjung Malaysia. Nilai kekerapan dijangka dapat
digunakan untuk menentukan nilai kemungkinan kelas basah setiap stesen. Selanjutnya, anggaran nilai kemungkinan yang telah diperoleh dapat
digunakan untuk menganggar kelas basah satu bulan ke hadapan, jika diketahui
kelas basah bulan sebelum dan bulan semasa. Pengkelasan
basah yang digunakan adalah berdasarkan indeks SPI (indeks hujan dipiawai). Bagi stesen hujan yang dianalisis, hasil bandingan antara
anggaran kelas basah dengan cerapan didapati tidak ada perbezaan. Hasil kajian ini memperlihatkan bahawa model loglinear dapat
digunakan untuk menganggar kelas kebasahan melalui anggaran nilai kemungkinan.
Kata kunci: Indeks Hujan Dipiawai (SPI);
kemungkinan; model loglinear; pengelasan basah
REFERENCES
Abramowitz, M. & Stegun, I.A. 1970. Handbook of mathematical functions with formulas, graphs and
mathematical tables. 9th ed. In Development
of the SPI Drought Index for Greece using Geo-Statistical Methods. Republic
of Macedonia: Balwois, edited by Chortaria, C., Karavitis, C.A. &
Alexandris, S.
Agresti, A. 2002. Categorical Data Analysis. New York: John Wiley & Sons.
Agung, I.G.N. 2001. Statistika: Analisis
Hubungan Kausal Berdasarkan Data Kategorik. Jakarta: PT. RajaGrafindo
Persada.
Cai, M. 2010. Study on variation in wet and low water of precipitation
prediction based on Markov with weights theory. 2010 Sixth International Conference
on Natural Computation (ICNC). IIEEE Journal 8: 4296-4300.
Cancelliere, A., Mauro, G.D.,
Bonaccorso, B. & Rossi, G. 2007. Drought
forecasting using the Standardized Precipitation Index. Journal of
Water Resources Management 21: 801-819.
Durdu, F.O. 2010. Application of linear
stochastic models for drought forecasting in the Buyuk Menderes river basin,
western Turkey. Journal of Stoch. Environ. Res. Risk Assess. 24: 1145-1162.
Edwards, D.C. & McKee, T.B. 1997. Characteristics
of 20th century drought in the United States at multiple time scales. Journal
of Water Resour. Manage. 23: 881-897.
Heriah, K. 2007. Perubahan Iklim Gobal: Dampak dan
Bahayanya. Jurusan Tanah, Fakultas Pertanian, Universitas Brawijaya,
Malang.
Kuruppumullage, P. & Sooriyarachchi, R. 2007. Log-linear
models for ordinal multidimensional categorical data. Journal of the
National Science Foundation of Sri Lanka 35(1): 29-40.
Labedzki. 2007. Estimation of lokal drought frequency in
central Poland using the Standardized Precipitation Index SPI. Irrigation
and Drainage 56: 67-77.
Lana, X., Serra, C. & Burgueno A.
2001. Patterns of monthly
rainfall shortage and excess in terms of the standardized precipitation index. International Journal of Climatology 21: 1669-1691.
McKee, T.B., Doesken, N.J. & Kleist, J. 1993. The relationship of drought frequency and duration to time scale. In Proceeding of the Ninth Conference on Applied Climatology, Boston:
American Meteorological Society.
Mishra, A.K. & Desai, V.R. 2005. Drought
forecasting using stochastic models. Stoch. Environ. Res. Risk.
Assess. 19: 326-339.
Moreira, E.E., Paulo, A.A., Pereira, L.S. & Mexia, J.T.
2006. Analysis of SPIdrought class transitions using loglinear models. Journal
of Hydrology 331: 349-359.
Moreira, E.E., Coelho, C.A., Paulo, A.A., Pereira, L.S.
& Mexia, J.T. 2008. SPI-based drought category prediction using loglinear
models. Journal of Hydrology 354: 116-130.
Paulo, A.A., Ferreira, E., Coelho, C.
& Pereira, L.S. 2005. Drought class transition analysis through Markov and Loglinear
models, an approach to early warning. Journal of Agricultural Water
Management 77: 59-81.
Paulo, A.A. & Pereira, L.S. 2007. Prediction
of SPIdrought class transition using Markov chains. Journal of Water
Resour. Manage. 21: 1813-1827.
Sene, K. 2010. Drought. Hydrometeorology. DOI 10.1007/978–90–481–3403-8_8. Springer Science+Bisnis Media B.V.
Thom, H.C.S. 1958. A note on the gamma
distribution. Monthly Weather Review 86: 117-122.
Turkes, M. & Tath, H. 2009. Use of the
Standardized Precipitation Index (SPI) and a modified SPI for shaping the
drought probabilities over Turkey. International Journal of
Climatology 29: 2270-2282.
*Corresponding
author; email: w_sanusi@yahoo.com
|