Sains Malaysiana 41(9)(2012): 1079–1086

 

 

Penilaian Awal Perubahan Sel Salur Kayu Baeckea frutescens yang dipengaruhi oleh Impak

Akibat Aktiviti Rekreasi di Gunung Tahan, Malaysia

(Preliminary Assessments on the Changes in Wood Vessel Characteristics of Baeckea frutescens

Influenced by the Impacts of Recreational Activities at Gunung Tahan, Malaysia)

 

 

Azita Ahmad Zawawi1,2,*, Masami Shiba2 , Hazandy Abdul Hamid3, Mohd Zaki Hamzah4 & Pakhriazah Hassan Zaki4

 

1The United Guaduote School of Agricultural Sciences, Kagoshima University, 1-21-24

Korimoto, Kagoshima 890-0665, Japan

 

2Faculty of Agriculture, University of The Ryukyus, 1 Senbaru, Nishihara 903-0216, Okinawa, Japan

 

3Laboratori Pengurusan Biosumber Mampan, Institut Perhutanan Tropika dan Produk Hutan

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

4Faculty Perhutanan, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

Received: 17 November 2011 / Accepted: 21 May 2012

 

 

ABSTRAK

Kajian mengenai corak susunan sel salur dijalankan terhadap struktur kayu Baeckea frutescens bagi menilai perbezaan ciri anatomi spesies tersebut akibat impak daripada aktiviti rekreasi di Gunung Tahan, Malaysia. Plot kajian bersaiz 20 m × 20 m dibina di tiga kawasan perkhemahan utama dan penilaian dijalankan di sub-plot yang mewakili kawasan terganggu dan kawasan kawalan. Kajian menunjukkan terdapat perbezaan pada susunan dan struktur sel salur B. frutescens antara kawasan kajian. Keputusan menunjukkan spesies yang tumbuh di kawasan terganggu mempunyai saiz sel salur yang lebih tinggi dengan nilai 177.06 μm2 berbanding 106.40 μm2 di kawasan kawalan. Bagi parameter tumbesaran pokok, nilai purata diameter di keseluruhan kawasan terganggu adalah 2.10 berbanding 1.55 cm di kawasan kawalan manakala nilai purata bacaan tinggi pokok adalah 0.95± 0.04 dan 0.82 ± 0.06 m bagi kedua- dua kawasan. Kebanyakan kajian lepas menunjukkan ciri anatomi kayu adalah tertakluk kepada faktor genetik sesuatu spesies namun kajian ini menghasilkan pemerhatian yang menarik dan ia menunjukkan bahawa faktor genetik anatomi sesuatu spesies kayu itu boleh berubah sebagai tindak balas terhadap sebarang gangguan dan respons kepada perubahan ciri ekologi sesebuah kawasan.

 

Kata kunci: Aktiviti rekreasi; Baeckea frutescens; impak; Gunung Tahan; struktur kayu

 

ABSTRACT

Vessel arrangement of Baeckea frutescens were studied to determine its anatomical differences as impacted by recreational activities at Gunung Tahan, Malaysia. Plots sized 20 m × 20 m represent disturbed and control areas were established in the most visited camping sites. The study demonstrated that there were differences of vessel arrangements in B. frutescens selected among the study areas. Our result showed that B. frutescens grew in the disturbed plot had higher vessel areas compared with the control plot with the mean values of 177.06 μm2 and 106.40μm2, respectively. For growth attributes, the average tree diameters in all the test sites were 2.10 and 1.55 cm at disturbed plot and control plot, respectively while the tree heights varied from 0.95±0.04 to 0.82 ±0.06 m for the disturbed and the control plots, respectively. Most previous studies indicated that wood anatomical characteristics are genetically fixed by species. However, interestingly, it was found from this study that vessel arrangement which is genetically influenced can change as a response to interferences and disturbances, depending on the ecological conditions.

 

Keywords: Baeckea frutescens; impact; Mount Tahan; recreational activities; wood structure

REFERENCES

Amira, A.H. 2010. Baeckea frutescens(Cucur Atap) Emulsion: Enhancing the smoothness of living skin. National Research and Inovation, Mei 25-28.

Arnold, D.H. & Mauseth, J.D. 1999. Effects of environmental factors on development of wood. American Journal of Botany 19(86): 367-371.

Azita, A.Z., Hazandy, A.H., Mohd-Zaki, H., Mohd-Nazre-S. & Pakhriazad, H.Z. 2009. Impacts of Recreation Activities on Growth and Physiological Characteristics of Upper Mountain Vegetation. Journal of Sustainable Development 2(2): 114-119.

Baas, P. 1982. Systematic, phylogenetic and ecological wood anatomy In New Perspectives in Wood Anatomy: Systematic, Hylogenetic and Ecological Wood Anatomy, edited by P. Baas. The Hague, The Netherlands: Martinus Nijhoff Publishers.

Bayfield, N.G. 1979. Some effects of trampling on Molophilus ater(Meigen). Biological Conservation6: 246-51.

Cole, D.N. & Bayfield, N.G. 1993. Recreational trampling on vegetation: Standard experimental procedures. Biological Conservation 63: 209-215.

Eberhardt, L.L. 1976. Quantitative ecology and impact assessment. Journal of Environmental Management 4: 22-70.

Falster, D.S. & Westoby, M. 2005. Alternative height strategies among 45 dicot rain forest species from Tropical Queesnland, Australia. Journal of Ecology 93: 521-535.

Foelkel, C. 2007. Vessel Elements and Eucalyptus Pulps. Celcius Degree.

Hacked, U.G. & Sperry, J.S. 2001. Functional and ecological xylem anatomy. Perspective in Plant Ecology, Evolution and Systematic 4: 97-115.

Hammit, W.E. & Cole, D.N. 1998. Wildland Recreation: Ecology and Management. 2nd ed. New York: John Wiley and Sons.

IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. International Association of Wood Anatomist Journal 10: 219-332.

Kramer, P.J. & Kozlowski, T.T. 1979. Physiology of Woody Plants. New York: Academic Press.

Larson, P.R. 1969. Wood Formation and the Concept of Wood Quality. New Haven: Yale University.

Liddle, M.J. 1997. Recreation Ecology. Chapman & Hall, London.

Marion, J.L. & Leung, Y.F. 1997. An Assessment of Campsite Conditions in Great Smoky Mountains National Park. In Research/Resources Management Report. Atlanta, GA: USDI National Park Service.

Marion, J.L., Leung, Y.F. & Nepal, S. 2006. Monitoring trail conditions: new methodological considerations. George Wright Forum 23 (2): 36-49.

Metcalfe, C.R. 1989. Ecological anatomy and morphology general survey, In Anatomy of the Dicotyledons. Wood Structural and Conclusion of the General Introduction, edited by C.R. Metcalfe & L. Chalk. Oxford, England: Oxford Science.

Muller-Landau, H.C. 2004. Interspecific and intersite variation in wood specific gravity of tropical trees. Biotropica 36: 20-32.

Ng, F.S.P. 1978. Tree Flora of Malaya. vol 3. London, England: Longman.

Ohori, N. 1988. Wood Softening Method for Preparing Microscopic Samples. Forest Research Centre.

Pallardy, S.G. & Kozlowski, T.T. 2008. Physiology of Woody Plant. 3rd Edition. NY: Academic Press.

Saribas, M. & Yaman, B. 2005. Wood Anatomy of Crataegus tanacetifolia (Lam.) Pers. (Rosaceae), Endemic to Turkey. International Journal of Botany 1(2): 158-162.

Schweingruber. 1980. In Use of false ring in Austrian pine to reconstruct early growing season precipitation. Canadian Journal of Forest Research, Wimmer. 30: 1691-1697.

Telewski, F.W. & Lynch, A.M. 1991. Measuring growth and development of stems. In Techniques and Approaches in Forest tree Ecophysiology, Boca Raton: CRC Press.

Whinam, J. & Chilcot, N. 1999. Impacts of trampling on alphine environment in central Tasmania. Journal of Environmental Management 57: 205-220.

Wimmer, R. 2002. Wood anatomical features in tree-rings as indicator of environmental change. Dendrochonologia 21: 21-36.

Zobel, B.J. & Van-Buijtenen, J.P. 1989. Wood Variation: Its Causes and Control. New York. Springer-Verlag.

 

 

*Corresponding author; email: azitazawawi@gmail.com

 

 

 

previous