Sains Malaysiana 41(9)(2012):
1149–1154
Performance of Two-Samples Pseudo-Median
Procedure
(Prestasi Prosedur Pseudo-Median Dua Sampel)
Nor Aishah Ahad1,*, Abdul Rahman Othman2 & Sharipah Soaad Syed Yahaya1
1School of Quantitative
Sciences, UUM College of Arts and Sciences
Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
2Robust Statistics
Computational Laboratory, School of Distance Education
Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
Received: 10 June 2011 /
Accepted: 16 April 2012
ABSTRACT
This article investigates the
performance of two-sample pseudo-median based procedure in testing differences
between groups. The procedure is a modification of the one-sample Wilcoxon
procedure using the pseudo-median of differences between group values as the
central measure of location. The test was conducted on two groups with moderate
sample sizes of symmetric and asymmetric distributions. The performance of the
procedure was measured in terms of Type I error and power rates computed via Monte
Carlo methods. The performance of the procedure was compared against the t-test
and Mann-Whitney-Wilcoxon test. The findings from this study revealed that the
pseudo-median procedure performed very well in controlling Type I error rates
close to the nominal value. The pseudo-median procedure outperformed the
Mann-Whitney-Wilcoxon test and is comparable to the t-test in controlling Type
I error and maintaining adequate power.
Keywords: Monte Carlo simulation;
power; pseudo-median; Type I error
ABSTRAK
Artikel ini mengkaji prestasi prosedur berasaskan pseudo-median dua sampel dalam menguji perbezaan di antara kumpulan. Prosedur ini terhasil melalui pengubahsuaian prosedur Wilcoxon satu sampel menggunakan pseudo-median semua perbezaan nilai antara kumpulan sebagai ukuran memusat lokasi. Ujian ini dilakukan ke atas dua kumpulan dengan saiz sampel sederhana daripada taburan simetri dan tidak simetri. Prestasi prosedur ini diukur berasaskan Ralat Jenis I dan kadar kuasa yang diperoleh melalui kaedah Monte Carlo. Prestasi prosedur ini dibandingkan dengan ujian-t dan ujian Mann-Whitney-Wilcoxon. Dapatan kajian menunjukkan bahawa prosedur pseudo-median mempunyai prestasi yang sangat baik dalam mengawal kadar Ralat Jenis I hampir kepada aras nominal. Prosedur pseudo-median mengatasi ujian Mann-Whitney-Wilcoxon dan setanding dengan ujian-t untuk mengawal ralat jenis I dan mengekalkan kuasa yang mencukupi.
Kata kunci: Kuasa;
pseudo-median; Ralat Jenis I; simulasi Monte Carlo
REFERENCES
Ahad, N.A., Othman, A.R.
& Syed Yahaya, S.S. 2011. Comparative
performance of Pseudo-Median Procedure, Welch’s Test and Mann-Whitney-Wilcoxon
at Specific Pairing. Journal of Modern Applied Science 5(5):
131-139.
Ahad,
N.A., Othman, A.R., Syed Yahaya, S.S. & Padmanabhan, A. R. 2009. New
Monte Carlo procedure with pseudo-medians for symmetric non-normal
distributions. In Mohd Tahir Ismail and Adli Mustafa (eds.) 5th Asian Mathematical Conference Proceedings (volume III), June
2009: 159-165.
Alexander, R.A. &
Govern, D.M. 1994. A new and simpler approximation for ANOVA
under variance heterogeneity. Journal of Educational Statistics 19:
91-101.
Bradley, J.V. 1978.
Robustness? British Journal of Mathematical and Statistical Psychology 31:
144-151.
Cribbie, R.A. & Keselman, H.J. 2003. Pairwise multiple comparisons: A model
comparison approach versus stepwise procedures. British Journal of
Mathematical and Statistical Psychology 56: 167-182.
Fleishman, A.I. 1978. A method for simulating non-normal distributions. Psychometrika 43: 521-532.
Hollander,
M. & Wolfe, D.A. 1999. Nonparametric Statistical
Methods. 2nd ed.
New York: John Wiley & Sons.
Hoyland, A.
1965. Robustness of the Hodges-Lehmann estimates for shift. The Annals of
Mathematical Statistics 36: 174-197.
Keselman, H.J., Carriere, K.C. & Lix, L.M.
1995. Robust and powerful nonorthogonal analyses. Psychometrika 60:
395-418.
Keselman. H.J., Wilcox. R.R., Lix, L. M., Algina,
J. & Fradette. K. 2007. Adaptive
robust estimation and testing. British Journal of Mathematical and Statistical
Psychology 60: 267-293.
Lix, L.M. & Keselman, H.J. 1998. To trim or not to trim: Tests of
location equality under heteroscedasticity and
non-normality. Educational and Psychological Measurement 58: 409-429.
Maxwell, S.E. &
Delaney, H.D. 2004. Designing Experiments and Anlyzing Data (2nd ed.) Mahwah, NJ: Erlbaum.
McGraw, K.O. & Wong,
S.P. 1992. A common language effect size statistic. Psychological
Bulletin 111: 361-365.
Murphy, K.R. & Myors, B. 2004. Statistical Power Analysis: A Simple and
General Model for Traditional and Modern Hypothsis Tests. 2nd ed. Mahwah, New Jersey: Lawrence
Erlbaum Associates.
Othman,
A.R., Keselman, H.J., Padmanabhan,
A.R., Wilcox, R.R. & Fradette, K. 2004. Comparing measures of
the “typical” score across treatment groups. British Journal of Mathematical
and Statistical Psychology 57: 215-234.
SAS
Institute Inc. 2006. SAS Online Doc. Cary, NC: SAS Institute Inc.
Syed Yahaya, S.S., Othman, A.R. & Keselman,
H.J. 2006. Comparing the “typical scores” across independent groups based on different
criteria for trimming. Metodoloski zvezki3: 49-62.
Vargha, A. & Delaney, H.D.
2000. A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics 25: 101-132.
Welch, B.L. 1938. The significance of the difference between two means when the
population variances are unequal. Biometrika 29: 350-362.
Wilcox, R.R. 1994. A one-way random effects model for trimmed means. Psychometrika 59: 289-306.
Wilcox, R.R. 2005. Introduction to Robust Estimation And Hypothesis Testing. New York: Academic Press.
*Corresponding author; email: aishah@uum.edu.my