Sains Malaysiana 42(11)(2013): 1549–1555
Synergistic
and Antagonistic Effects of Zinc Bioaccumulation with Lead and
Antioxidant
Activities in Centella asiatica
(Kesan Sinergistik dan Antagonistik oleh Bioakumulasi Zinkdengan
Plumbum dan
Aktiviti Antioksidan di Centella asiatica)
G.H. ONG1, C.K.
YAP1*, M.
MAZIAH2 & S.G. TAN3
1Department of Biology, Faculty of Science, Universiti
Putra Malaysia
43400 UPM, Serdang, Selangor, Malaysia
2Department of Biochemistry, Faculty of Biotechnology
and Biomolecular Sciences
Universiti Putra Malaysia, 43400 UPM, Serdang,
Selangor, Malaysia
3Department of Cell and Molecular Biology, Faculty of Biotechnology
and Biomolecular Sciences
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
Received: 13 June 2012 /Accepted: 9 April 2013
ABSTRACT
This study was carried out by using Centella asiatica grown using a hydroponic
system under laboratory conditions to study synergistic and antagonistic
effects of Zn bioaccumulation with added Pb and the changes in antioxidant
activities in leaves and roots of C. asiatica. The antioxidant
activities included superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX)
and guaiacol peroxidase (GPX). The treatments Zn (2 ppm) + Pb
(0.4 ppm) and Zn (4 ppm) + Pb (0.6 ppm) increased the accumulation of Zn in
leaves by 14.06 and 16.84%, respectively, but
decreased by 7.36% uptake in roots (Zn 4 ppm + Pb 0.6 ppm). This showed that Pb
and Zn acted synergistically to Zn accumulation in leaves but antagonistically
in roots. CAT and SOD activities in leaves were
increased when Zn was added together with Pb. In roots, CAT, APX and SOD activities were increased but GPX was
decreased. Owing to their sensitivities to Zn with Pb, SOD and CAT could be used as biomarkers to monitor the toxicity of Pb and Zn
exposure in the leaves and roots of C. asiatica.
Keywords: Antagonistic; antioxidant activities; Centella asiatica; synergistic
ABSTRAK
Kajian ini telah dijalankan dengan Centella asiatica secara hidroponik dalam keadaan
makmal untuk mengkaji kesan sinergistik dan antagonistik bioakumulasi
Zn ditambah dengan Pb dan perubahan dalam aktiviti antioksidan dalam
daun dan akar C. asiatica. Aktiviti antioksidan
termasuk superokside dimustase (SOD), katalase (CAT),
peroksidase askorbat (APX) dan peroksidase guaiacol (GPX).
Rawatan Zn (2 ppm) + Pb (0.4 ppm) dan Zn (4 ppm) + Pb (0.6 ppm)
menunjukkan pengumpulan Zn dalam daun sebanyak 14.06 dan 16.84% masing-masing tetapi menurun
sebanyak 7.36% dalam pengambilan akar (Zn 4 ppm + Pb 0.6 ppm). Ini menunjukkan bahawa Pb dan Zn bertindak secara sinergistik untuk
pengumpulan Zn dalam daun tetapi antogonistik dalam akar.
Aktiviti CAT
dan SOD
dalam daun meningkat apabila Zn ditambah bersama dengan
Pb. Dalam akar, CAT, APX dan SOD telah
meningkat tetapi GPX telah menurun. Disebabkan sentiviti
kepada Zn dengan Pb, SOD dan CAT boleh
digunakan sebagai penanda biologi untuk memantau ketoksikan pendedah
Pb dan Zn dalam daun dan akar C. asiatica.
Kata kunci: Aktiviti antioksidan; antagonistik; Centella asiatica; sinergistik
REFERENCES
Aebi, H. 1984. Catalase in
vitro. Methods Enzymol. 105: 121-126.
Aery, N.C. & Rana, D.K.
2007. Interactive
effects of Zn, Pb and Cd in barley. J. Environ. Sci. Eng. 49(1):
71-76.
An, Y.J., Kim, Y.M., Kwon,
T.I. & Jeong, S.W. 2004. Combined effect of copper, cadmium, and lead
upon Cucumis sativus growth and bioaccumulation. Sci. Total
Environ. 326: 85-93.
Beauchamp, C. & Fridovich, I. 1971.
Superoxide dismutase: Improved assays and an assay applicable to acrylamide
gels. Anal. Biochem. 44: 276-287.
Blaylock, M.J. & Huang, J.W. 1999. Phytoextraction of metals. In Phytoremediation of Toxic
Metals: Using Plants to Clean up the Environment, edited by
Raskin, I. & Ensley, B.D. New York:
John Wiley & Sons Inc. pp. 53-70.
Bradford, M.M. 1976. A rapid
and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Anal. Biochem. 72:
248-254.
Brinkhaus, B., Lindner, M.,
Schuppan, D. & Hahn, E.G. 2000. Review Article: Chemical, pharmacological and clinical profile of
the East Asian medical plant Centella asiatica. Phytomedicine 7(5):
427-448.
Broadley, M.R., White, P.J.,
Hammond, J.P., Zelko, I. & Lux, A. 2007. 'Zinc in plants'. New Phytologist 173(4):
677-702.
Clemens, S., Palmgren, M.G.
& Kramer, U. 2002. A long
way ahead: Understanding and engineering plant metal accumulation. Trends
Plant Sci. 7: 309-315.
Cobbett, C.S. 2000. Phytochelatins
and their roles in heavy metal detoxification. Plant Physiol. 123:
825-832.
de Abreu, C.A., de Abreu, M.F. & de Andrade,
J.C. 1998. Distribution of lead in the soil profile evaluated
by DTPA and Mehlich-3 solutions. Bragantia. 57: 185-192.
Eick, M.J., Peak, J.D.,
Brady, P.V. & Pesek, J.D. 1999. Kinetics of lead adsorption and desorption on goethite: Residence
time effect. Soil Sci. 164: 28-39.
Foyer, C.H. & Noctor,
G. 2005. Redox homeostasis and
antioxidant signaling: A metabolic interface between stress perception and
physiological responses. The Plant Cell. 17(7):
1866-1872.
Foyer, C.H., Noctor, G.,
Buchanan, B., Dietz, K.J. & Pfannschmidt, T. 2009. Redox regulation in photosynthetic organisms:
Signaling, acclimation and practical implications. Antioxid. Redox. Signal. 11(4):
861-905.
Hemeda, H.M. & Klein, B.P. 1990. Effects of naturally occurring antioxidants on peroxidase activity
of vegetable extracts. J. Food Sci. 55: 184-185.
Israr, M., Jewell, A.,
Kumar, D., Shivendra, V. & Sahi, S.V. 2011. Interactive effects of lead, copper, nickel and
zinc on growth, metal uptake and antioxidative metabolism of Sesbania
drummondii. J. Hazard Mater. 186: 1520-1526.
Kopittke, P.M., Blamey, F.P.C., Asher, C.J.
& Menzies, N.W. 2010. Trace metal phytotoxicity in solution culture: A
review. J. Exp. Bot. 61(4): 945-954.
Kuk, Y.I., Shin, J.S.,
Burgos, N.R., Hwang, T.E., Han, O., Cho, B.H., Jung, S. & Guh, J.O. 2003. Antioxidative enzymes offer protection from
chilling damage in rice plants. Crop Sci. 43: 2109-2117.
Lichtenthaler, H.K. 1998. The stress concept in
plants: An introduction. Ann. NY. Acad. Sci. 851: 187-198.
Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J. &
Tack, F.M.G. 2007. Potential
of five willow species (Salix spp.) for phytoextraction of heavy metals.nviron. Exp. Bot. 60: 57-68.
Miransari, M. 2011. Hyperaccumulators,
arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol.
Adv. 29(6):645- 653.
Mishra, S., Srivastava, S., Tripathi, R.D.,
Govindarajan, R., Kuriakose, S.V. & Prasad, M.N.V. 2006. Phytochelatin synthesis and response of antioxidants during
cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44: 25-37.
Mittler, R., Vanderauwera, S., Gollery, M. &
Breusegem, F.V. 2004. Abiotic
stress series. Reactive oxygen gene network of plants. Trends Plant Sci. 9(10): 490-498.
Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by
ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:
867-880.
Neill, S.J., Desikan, R., Clarke, A., Hurst,
R.D. & Hancock, J.T. 2002. Hydrogen
peroxide and nitric oxide as signalling molecules in plants. J. Exp.
Bot. 53: 1237-1247.
Parra-Lobato, M.C., Fernandez-Garcia, N., Olmos,
E., Alvarez- Tinaut, M.C. & Gomez- Jimenez, M.C. 2009. Methyl jasmonate-induced antioxidant defence in root apoplast
from sunflower seedlings. Environ. Exp. Bot. 66(1): 9-17.
Peng, H.Y., Tian, S.K. & Yang, X.E. 2005. Changes
of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J. Zhejiang Univ. Sci. B. 6(6): 546-552.
Rout, G.R. & Das, P. 2009. Effect of metal toxicity on plant
growth and metabolism: I. zinc. Sustainable Agriculture 7: 873-884.
Sarvajeet, S.G. & Narendra, T. 2010. Reactive oxygen species and antioxidant machinery in abiotic
stress tolerance in crop plants. Plant Physiol. Biochemistr. 48:
909-930.
Schützendübel, A. & Polle, A. 2002. Plant responses to abiotic
stresses: Heavy metal-induced oxidative stress and protection by
mycorrhization. J. Exp. Bot. 53(372): 1351-1365.
Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Braz.
J. Plant Physiol. 17(1): 35-52.
Sharma, P., Jha, A.B., Dubey, R.S. &
Pessarakli, M. 2012. Reactive
oxygen species, oxidative damage, and antioxidative defense mechanism in plants
under stressful conditions. Journal of Botany doi:
10.1155/2012/217037.
Singh, J., Upadhyay, A.K., Bahadur, A., Singh,
B., Singh, K.P. & Rai, M. 2006. Antioxidant
phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci.
Hortic. 108: 233- 237.
Singh, S. & Sinha, S. 2005. Accumulation of
metals and its effect in Brassica juncea L. Czern. (var. rohini) grown on various amendments of tannery waste. Ecotoxicol.
Environ. Saf. 62: 122-127.
Sinha, P., Dube, B.K., Srivastava, P. &
Chatterjee, C. 2006. Alteration
in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65(4): 651-656.
Soares, C.R.F.S., Accioly, A.M.A., Marques, T.C.L.L.S., Siqueira,
J.O. & Moreira, F.M.S. 2001. Accumulation and distribution heavy
metals in root, stems and leaves of tree seedlings in soil contaminated
by zinc industry wastes. Rev. Bras. Fis. Veg. 13: 302-315.
Starzynska, A., Leza, M. & Mareczek, A.
2003. Physiological changes in the antioxidant system
of broccoli flower buds senescence during short term storage, related to
temperature and packaging. Plant Sci. 165: 1387-1395.
Street, R.A., Kulkarni, M.G., Stirk, W.A., Southway, C.,
Abdillahi, H.S., Chinsamy, M. & Van Staden, J. 2009. Effect
of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla
plumbea- an extensively used medicinal plant in South Africa. S.
Afr. J. Bot. 75(3): 611-616.
Stroinski, A. & Kozlowska, M. 1997. Cadmium induced oxidative stress in potato tuber. Acta Soc.
Bot. Pol. 66: 189-195.
Tang, Y.T., Qiu, R.L., Zheng, X.W., Ying, R.R.,
Yu, F.M. & Zhou, Z.Y. 2009. Lead,
zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exper. Bot. 66: 126-134.
Verma, S. & Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation
and alters the activities of antioxidant enzymes in growing rice plants. Plant
Sci. 164: 645-655.
WHO. 1999. Monographs on Selected Medicinal Plants. 1:
77-85.
Wong, M.K., Chuah, G.K., Ang, K.P. & Koh, L.L. 1986. Interactive effects of lead, cadmium and copper combinations in the
uptake of metals and growth of Brassica chinensis. Environ.
Exper. Bot. 26(4): 331-339.
Wu, Y., Wang, X., Li, Y. & Ma, Y. 1995. Compound pollution of
Cd, Pb, Cu, Zn and As in plant soil system and its
prevention. J. Environ. Sci. 8(4): 474-482.
Yan, C., Li, G., Xue, P., Wei, Q. & Li, Q.
2010. Competitive effect of Cu (II) and Zn(II) on the biosorption of lead(II) by Myriophyllum
spicatum. J. Hazard Mater. 179: 721-728.
Yang, X., Long, X.X., Ni, W.Z. & Fu, C.X.
2002. Sedum alfredii H: A new Zn
hyperaccumulating plant first found in China. Chin. Sci. Bull. 47:
1634-1637.
Yap, C.K., Mohd Fitri, M.R., Mazyhar, Y. &
Tan, S.G. 2010. Effect of
metal-contaminated soils on the accumulation of heavy metal in different parts
of Centella asiatica: A laboratoty study. Sains Malaysiana 39:
347-352.
Zar, J.H. 1996. Biostatistical Analysis. 3rd ed. New Jersey:
Prentice Hall.
Zheljazkov, V.D., Craker, L.E. & Xing, B. 2006. Effects of Cd,
Pb, and Cu on growth and essential oil contents in dill, peppermint,
and basil. Envrion. Exp. Bot. 58: 9-16.
*Corresponding author; email: yapckong@hotmail.com
|